February 28 Math 3260 sec. 51 Spring 2022

Section 2.3: Characterization of Invertible Matrices

Theorem: Suppose A is $n \times n$. The following are equivalent.
(a) A is invertible.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one to one.
(g) $\mathbf{A x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There exists an $n \times n$ matrix C such that $C A=I$.
(k) There exists an $n \times n$ matrix D such that $A D=I$.
(I) A^{T} is invertible.

Example

Suppose $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a one to one linear transformation. Can we determine whether T is onto? Why (or why not)?

The standard matrix would be $n \times n$.
For a square matrix A, if $\vec{x} \mapsto A \vec{x}$ is one to one, it is also onto. $(f) \Rightarrow$ (i) on that last theorem.
we con determine that T is also onto.

Invertible Linear Transformations

Definition: A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that both

$$
(S \circ T)(\hat{x})=S(T(\mathbf{x}))=\mathbf{x} \quad \text { and } \quad T(S(\mathbf{x}))=\mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

If such a function exists, we typically denote it by

$$
S=T^{-1}
$$

Theorem (Invertibility of a linear transformation and its matrix)

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation and A its standard matrix. Then T is invertible if and only if A is invertible. Moreover, if T is invertible, then

$$
T^{-1}(\mathbf{x})=A^{-1} \mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

Example
Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$
T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad \text { given by } \quad T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2}, 4 x_{2}\right) .
$$

Let's find the stand ard matrix, A, for
T.

$$
\begin{aligned}
& A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right] \\
& T\left(\vec{e}_{1}\right)=T(1,0)=(3 \cdot 1-0,4 \cdot 0)=(3,0)=\left[\begin{array}{c}
3 \\
0
\end{array}\right] \\
& T\left(\vec{e}_{2}\right)=T(0,1)=(3 \cdot 0-1,4 \cdot 1)=(-1,4)=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
\end{aligned}
$$

$A=\left[\begin{array}{cc}3 & -1 \\ 0 & 4\end{array}\right]$. Note $\operatorname{det}(A)=3 \cdot 4-0(-1)=12 \neq 0$
Since $\operatorname{det}(A) \neq 0, A$ is in vertible.
Hence T is invertible and $T^{-1}(\vec{x})=A^{-1} \vec{x}$.

$$
\begin{aligned}
& A^{-1}=\frac{1}{12}\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right] \\
& T^{-1}(\vec{x})=A^{-1} \vec{x}=\frac{1}{12}\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{12}\left[\begin{array}{c}
4 x_{1}+x_{2} \\
3 x_{2}
\end{array}\right]
\end{aligned}
$$

In the original format

$$
T^{-1}\left(x_{1}, x_{2}\right)=\left(\frac{1}{3} x_{1}+\frac{1}{12} x_{2}, \frac{1}{4} x_{2}\right)
$$

February' 28, $2022 \quad 6 / 43$

$$
\begin{aligned}
T\left(x_{1}, x_{2}\right) & =\left(3 x_{1}-x_{2}, 4 x_{2}\right) \\
T^{-1}\left(x_{1}, x_{2}\right) & =\left(\frac{1}{3} x_{1}+\frac{1}{12} x_{2}, \frac{1}{4} x_{2}\right) \\
\left(T^{-1} \circ T\right)(\vec{x}) & =T^{-1}\left(T\left(x_{1}, x_{2}\right)\right) \\
& =T^{-1}\left(3 x_{1}-x_{2}, 4 x_{2}\right) \\
& =\left(\frac{1}{3}\left(3 x_{1}-x_{2}\right)+\frac{1}{12}\left(4 x_{2}\right), \frac{1}{4}\left(4 x_{2}\right)\right) \\
& =\left(x_{1}-\frac{1}{3} x_{2}+\frac{1}{3} x_{2}, x_{2}\right) \\
& =\left(x_{1}, x_{2}\right)
\end{aligned}
$$

