February 28 Math 3260 sec. 52 Spring 2022

Section 2.3: Characterization of Invertible Matrices

3

1/43

February 28, 2022

Theorem: Suppose *A* is $n \times n$. The following are equivalent.

- (a) A is invertible.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A are linearly independent.
- (f) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one to one.
- (g) $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- (j) There exists an $n \times n$ matrix C such that CA = I.
- (k) There exists an $n \times n$ matrix D such that AD = I.
- (I) A^{T} is invertible.

Example

Suppose $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a one to one linear transformation. Can we determine whether *T* is onto? Why (or why not)?

イロト イポト イヨト イヨト

Invertible Linear Transformations

Definition: A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is said to be **invertible** if there exists a function $S : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that both

$$(s \circ \tau)(\mathbf{\hat{x}}) = S(T(\mathbf{x})) = \mathbf{x}$$
 and $T(S(\mathbf{x})) = \mathbf{x}$

for every **x** in \mathbb{R}^n .

If such a function exists, we typically denote it by

$$S = T^{-1}$$

February 28, 2022 3/43

A D N A B N A B N A B N

Theorem (Invertibility of a linear transformation and its matrix)

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and *A* its standard matrix. Then *T* is invertible if and only if *A* is invertible. Moreover, if *T* is invertible, then

$$T^{-1}(\mathbf{x}) = A^{-1}\mathbf{x}$$

February 28, 2022

4/43

for every **x** in \mathbb{R}^n .

Example

Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \text{ given by } T(x_{1}, x_{2}) = (3x_{1} - x_{2}, 4x_{2}).$$
The standard matrix A will be ZXZ.

$$A = \left[T(\vec{e}_{1}) T(\vec{e}_{2}) \right]$$

$$T(\vec{e}_{2}) = T(1, 6) = (3 \cdot 1 - 0, 4 \cdot 0) = (3, 6) = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$T(\vec{e}_{2}) = T(0, 1) = (3 \cdot 0 - 1, 4 \cdot 1) = (-1, 4) = \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$$

 $A = \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}$. $det(A) = 3(4) - 0(-1) = 12 \neq 0$ So A is invertible making I invertible and $T'(\vec{x}) = \vec{A}' \vec{x}$, $A' = \frac{1}{12} \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$ $T^{-1}(\vec{x}) = A^{+1}\vec{x} = \frac{1}{12} \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 4\chi_{1} + \chi_{2} \\ 3\chi_{2} \end{bmatrix}$ In the original format $T'(X_1, \chi_2) = \left(\frac{1}{3}X_1 + \frac{1}{12}X_2, \frac{1}{3}X_2\right)$

 $T(x_1, \chi_2) = (3\chi_1 - \chi_1, 4\chi_2)$ $T'(x_1, x_2) = (\frac{1}{3}x_1 + \frac{1}{12}x_2, \frac{1}{12}x_2)$ $(T'\circ T)(\vec{x}) = T(T(\vec{x}))$ $= T^{-1}(T(x_1, x_2))$ $= T'(3x_1 - X_2, 4x_2)$ $= \left(\frac{1}{3}(3X_{1}-X_{2})+\frac{1}{12}(4X_{2}), \frac{1}{4}(4X_{2})\right)$ = (X, - + X2 + + X2, X2) $= (X_1, X_2)$ February 28, 2022 7/43