February 28 Math 3260 sec. 52 Spring 2024

Section 3.2: Properties of Determinants

Theorem:

Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{2}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A) .
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A)
$$

alf "row" is replaced by "column" in any of the operations, the e@ngl| $\mu \mathrm{sic}_{1,0,0 \varepsilon_{4}}$

Example

Let $\quad A=\left[\begin{array}{rrrr}1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 6 \\ 1 & -3 & 1 & 4 \\ 1 & 5 & 1 & -5\end{array}\right]$

The following row operations produce the ref matrix B ．

$$
\begin{array}{ll}
\text { 1. }-R_{1}+R_{2} \rightarrow R_{2} \text { nochange } & \text { 5. } R_{2}+R_{3} \rightarrow R_{3} \text { no charge } \\
\text { 2. }-R_{1}+R_{3} \rightarrow R_{3} \text { " } & \text { 6. } R_{3} \leftrightarrow R_{4} \text { fader 八 } \\
\text { 3. }-R_{1}+R_{4} \rightarrow R_{4} \text { " } & \text { 7. }-2 R_{3}+R_{4} \rightarrow R_{4} \text { no chary } \\
\text { 4. } R_{2} \leftrightarrow R_{4} \text { factor } & \text { 8. } \frac{1}{13} R_{4} \rightarrow R_{4} \text { scale 立 }
\end{array}
$$

Example

$$
\operatorname{ref}(A)=B=\left[\begin{array}{rrrr}
1 & 1 & 2 & 3 \\
0 & 4 & -1 & -8 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \operatorname{det}(\beta)=1(4)(-1)(1)=-4
$$

Find $\operatorname{det}(A)$ by relating it to $\operatorname{det}(B)$.

$$
\begin{aligned}
\operatorname{det}(B) & =(-1)(-1)\left(\frac{1}{13}\right) \operatorname{det}(A) \\
-4 & =\frac{1}{13} \operatorname{det}(A) \\
& \Rightarrow \operatorname{det}(A)=-4(13)=-52
\end{aligned}
$$

Results on Determinants

Theorem

The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem

For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem
For $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example
Show that if A is an $n \times n$ invertible matrix, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Proof: Suppose A^{-1} exists. Then

$$
\begin{aligned}
& A A^{-1}=I \cdot \quad \operatorname{den} a \\
& \operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1 \\
& \operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1 \\
& \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
\end{aligned}
$$

