February 2 Math 3260 sec. 52 Spring 2022

Section 1.5: Solution Sets of Linear Systems
We defined a linear system as being homogeneous if the right hand side is zero (the zero vector). We have theorems on homogeneous systems that say:

Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, $\mathbf{x}=\mathbf{0}$, called the trivial solution.

Theorem: The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Examples

Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(b) $\begin{aligned} 3 x_{1}+5 x_{2}-4 x_{3} & =0 \\ -3 x_{1}-2 x_{2}+4 x_{3} & =0 \\ 6 x_{1}+x_{2}-8 x_{3} & =0\end{aligned}$

We set up and row reduced the augmented matrix to get

$$
\left[\begin{array}{rrrr}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \quad \longrightarrow\left[\begin{array}{rrrr}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

and concluded that $x_{1}=\frac{4}{3} x_{3}, x_{2}=0$, and x_{3} is free.

Examples

Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(b) $\begin{aligned} 3 x_{1}+5 x_{2}-4 x_{3} & =0 \\ -3 x_{1} & -2 x_{2}+4 x_{3}=0 \\ 6 x_{1}+x_{2}-8 x_{3} & =0\end{aligned}$

We can express the solution in the form

$$
\mathbf{x}=x_{3}\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
1
\end{array}\right] \quad \text { where } x_{3} \text { is any real number. }
$$

(c) $x_{1}-2 x_{2}+5 x_{3}=0$

The augmented matrix ir
$\left[\begin{array}{llll}1 & -2 & 5 & 0\end{array}\right]$ This is an pref non pivot columns
x_{1} is basic, x_{2} and x_{3} are free
There are nontrivial solutions. The solutions are given by

$$
x_{1}=2 x_{2}-5 x_{3}
$$

x_{2} and x_{3} are free

The solution vectors \vec{x} have the form

$$
\begin{aligned}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{c}
2 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
\vec{x} & =x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] \quad \begin{array}{l}
\text { when } \\
x_{2} \text { and } x_{3}
\end{array}
\end{aligned}
$$ real numbers

are any
we con soy \vec{x} is in

$$
\begin{aligned}
& \vec{x} \text { is in } \\
& \operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x}=x_{3} \mathbf{v}$. Example (c)'s solution set consisted of vector that look like $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$. Since these are linear combinations, we could write the solution sets like

$$
\operatorname{Span}\{\mathbf{W}\} \text { or } \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}
$$

Instead of using the variables x_{2} and/or x_{3} we often substitute parameters such as s or t.
The forms

$$
\mathbf{x}=s \mathbf{u}, \quad \text { or } \quad \mathbf{x}=s \mathbf{u}+t \mathbf{v}
$$

are called parametric vector forms.

Geometry

The parametric vector form of the solution set of the system

$$
\begin{array}{r}
3 x_{1}+5 x_{2}-4 x_{3}=0 \\
-3 x_{1}-2 x_{2}+4 x_{3}=0 \text { is } \\
6 x_{1}+x_{2}-8 x_{3}=0
\end{array}
$$

This is a line in \mathbb{R}^{3} through the points $(0,0,0)$ and $\left(\frac{4}{3}, 0,1\right)$.

Geometry

Span $\{\vec{u}\}$ is the set or all vectors of the form

Figure: Plot of the line $\mathbf{x}=s\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]$. The point $\left(\frac{4}{3}, 0,1\right)$ is shown in green.

Geometry

The parametric vector form of the solution set of $x_{1}-2 x_{2}+5 x_{3}=0$ is

$$
\mathbf{x}=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right], \quad \text { where } s, t \in \mathbb{R}
$$

This is a plane in \mathbb{R}^{3} that contains the points $(0,0,0),(2,1,0)$, and $(-5,0,1)$.

Geometry

Figure: Plot of the plane $\mathbf{x}=s\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right]$. The blue vectors are in the directions of $(2,1,0$ and $(-5,0,1)$. The purple vector is perpendicular to the plane.

