February 5 Math 3260 sec. 51 Spring 2024

Section 1.8: Intro to Linear Transformations

Recall that the product $A \mathbf{x}$ is a vector that is a linear combination of the columns of A.

If the columns of A are vectors in \mathbb{R}^{m}, and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A \mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^{n}, and
- the vector $\mathbf{b}=A \mathbf{x}$ is a vector in \mathbb{R}^{m}.

Remark: We can think of a matrix A as an operator that acts on vectors \mathbf{x} in \mathbb{R}^{n} (via the product $A \mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^{m}.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition

A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Remark

Another name for a transformation is a function or mapping. The parentheses notation $T(\cdot)$ is typical function notation. A transformation takes a vector as an input and spits out a vector as the output.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Function Notation: If a transformation T takes a vector \mathbf{x} in \mathbb{R}^{n} and maps it to a vector $T(\mathbf{x})$ in \mathbb{R}^{m}, we can write

$$
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

which reads " T maps \mathbb{R}^{n} into \mathbb{R}^{m}."
And we can write

$$
\mathbf{x} \mapsto T(\mathbf{x})
$$

which reads "x maps to T of \mathbf{x}."
The following vertically stacked notation is often used:

$$
\begin{aligned}
T & : \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
& \mathbf{x} \mapsto T(\mathbf{x})
\end{aligned}
$$

Key Terms

For $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$,

- \mathbb{R}^{n} is the domain, and
$-\mathbb{R}^{m}$ is called the codomain.
- For \mathbf{x} in the domain, $T(\mathbf{x})$ is called the image of \mathbf{x} under T. (We can call \mathbf{x} a pre-image of $T(\mathbf{x})$.)
- The collection of all images is called the range.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A \mathbf{x}$.

Matrix Transformation Example

Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]$. Define the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by the
mapping $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the image of the vector $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under T.

$$
\begin{aligned}
& \text { Find } T(\vec{u}) \text {. } \\
& T(\vec{u})=A \vec{u}=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right]
\end{aligned}
$$

Example Continued...

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right], \quad \begin{gathered}
T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3} \\
x \mapsto A \mathbf{x}
\end{gathered}
$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^{2} whose image under T is $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$. This is ashing us to find \vec{x} in \mathbb{R}^{2} such that $T(\vec{x})=\left[\begin{array}{c}-4 \\ -4 \\ y\end{array}\right]$. This gives a matrix equation

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right)=\left[\begin{array}{c}
-4 \\
-4 \\
4
\end{array}\right]
$$

Doing an augmented matrix x

$$
\left[\begin{array}{ccc}
1 & 3 & -4 \\
2 & 4 & -4 \\
0 & -2 & 4
\end{array}\right] \xrightarrow{\text { rret }}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=2 \\
& x_{2}=-2
\end{aligned}
$$

Hence $\vec{x}=\left[\begin{array}{c}2 \\ -2\end{array}\right]$ is a preimoge of $\left[\begin{array}{c}-4 \\ -4 \\ 1\end{array}\right]$

$$
T\left(\left[\begin{array}{c}
2 \\
-2
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
-4 \\
4
\end{array}\right]
$$

Example Continued...

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right], \quad T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}
$$

(c) Determine if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the range of T.

This is ashing whether there exists \vec{x} in \mathbb{R}^{2} such that $T(\vec{x})=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Using on augmented matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The system $A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is inconsistent.

Pence $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is not in the range of T.

Linear Transformations

Definition

A transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Remark 1:These were the two properties (that I claimed were a big deal) of the product $A \mathbf{x}$ from section 1.4.

Remark 2: Every matrix transformation (e.g. $\mathbf{x} \mapsto A \mathbf{x}$) is a linear transformation. And every linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ can be stated in terms of a matrix.

