February 7 Math 3260 sec. 51 Spring 2022

Section 1.5: Solution Sets of Linear Systems

- We defined a linear system, $A \mathbf{x}=\mathbf{b}$ as being homogeneous if the right hand side is the zero vector, i.e. $\mathbf{b}=\mathbf{0}$.
- A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, $\mathbf{x}=\mathbf{0}$, called the trivial solution.
- And it will have nontrivial solutions if and only if it has at least one free variable.

Examples

We solved the system $\begin{array}{cc}3 x_{1}+5 x_{2}-4 x_{3}=0 \\ -3 x_{1}-2 x_{2}+4 x_{3}=0 \\ 6 x_{1}+x_{2}-8 x_{3}=0\end{array}$
We set up and row reduced the augmented matrix to get

$$
\left[\begin{array}{rrrr}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{rrrr}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We expressed the solution set (a line in \mathbb{R}^{3}) in parametric vector form

$$
\mathbf{x}=s\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
1
\end{array}\right] \quad \text { where } s \text { is any real number. }
$$

Nonhomogeneous Systems
Find all solutions of the nonhomogeneous system of equations

$$
\begin{gathered}
3 x_{1}+5 x_{2}-4 x_{3}=7 \\
-3 x_{1}-2 x_{2}+4 x_{3}=-1 \\
6 x_{1}+x_{2}-8 x_{3}=-4
\end{gathered}
$$

we can use an augmented matrix

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From the ref, the equations are

$$
\begin{aligned}
x_{1} \quad-4 / 3 x_{3} & =-1 \\
x_{2} & =2
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad x_{1} & =-1+\frac{4}{3} x_{3} \\
x_{2} & =2
\end{aligned}
$$

x_{3} is free

The solutions

$$
\begin{aligned}
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{c}
-1+\frac{4}{3} x_{3} \\
2 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
4 / 3 x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

If we replace x_{3} with a parameter, say t, we con write this in parametric vector form.

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right], \quad t \in \mathbb{R} .
$$

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t v$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!
\mathbf{p} is called a particular solution, and $t \mathbf{v}$ is called a solution to the associated homogeneous equation.

Geometry $\mathbf{x}=\mathbf{p}+t \mathbf{v}$ in \mathbb{R}^{3}

Figure: Plot of the line $\mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]$. The point $(-1,2,0)$ is shown in red.

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

Example
Find the solution set of the following system. Express the solution set in parametric vector form.

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}+4 x_{4}=1 \\
2 x_{1}+3 x_{2}-6 x_{3}+12 x_{4}=4
\end{array}
$$

Using on augmented matrix

$$
\left[\begin{array}{ccccc}
1 & 1 & -2 & 4 & 1 \\
2 & 3 & -6 & 12 & 4
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -2 & 4 & 2
\end{array}\right]
$$

The system is $\quad x_{1} \quad=-1$

$$
x_{2}-2 x_{3}+4 x_{4}=2
$$

The solution set is given by

$$
\begin{aligned}
& x_{1}=-1 \\
& x_{2}=2+2 x_{3}-4 x_{4}
\end{aligned}
$$

x_{3} and x_{4} are free
going to parametric vert or form

$$
\begin{aligned}
\vec{x} & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2+2 x_{3}-4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
2 x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-4 x_{4} \\
0 \\
x_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
-4 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

\vec{x} is in the plan

$$
\begin{aligned}
\vec{X} & =\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-4 \\
0 \\
1
\end{array}\right] \quad s, t \in \mathbb{R} \\
& =\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right] \text { and } \vec{V}_{h}=s\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-4 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A \mathbf{x}=\mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

And, we know that at least one solution (the trivial one $x_{1}=x_{2}=\cdots=x_{n}=0$) always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.

Definition: Linear Independence

Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.
If a set of vectors is not linearly independent, we say that it is linearly dependent.

Linear Dependence \& Independence

We can restate this definition:
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$, at least one of which is nonzero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Remark: The condition on the c's not all being zero is the same thing as saying the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$ has a nontrivial solution.

Definition: An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Theorem on Linear Independence

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Remark: This follows directly from the definition of linear independence. It gives a characterization of the columns of a matrix as a set of vectors.

Example
Determine if the set is linearly dependent or linearly independent.
(a) $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$

One approad is to use the last theorem by creating o matrix $A=\left[\begin{array}{ll}\vec{v} & \vec{v}_{2}\end{array}\right]$.

Now, consider tho homogereous system
$A \vec{x}=\overrightarrow{0}$. The augmented matrix is

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

There are no free variables, hence $A \vec{x}=\overrightarrow{0}$ has only the trivial solution

The columns of A are linearly in de percent.

That is, $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is linearly independent.

Example
Determine if the set is linearly dependent or linearly independent.
(b) $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Note that $\vec{V}_{3}=\vec{V}_{1}+\vec{V}_{2}$.
This equation con be reasranged into a linear dependence relation.

$$
\vec{V}_{1}+\vec{V}_{2}-\vec{V}_{3}=\overrightarrow{0}
$$

This has the form

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

with $c_{1}=c_{2}=1$ and $c_{3}=-1$.
At least ane of these C^{\prime} 's is nonzero. Hence $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly dependent.

