February 7 Math 3260 sec. 51 Spring 2024

Section 1.8: Intro to Linear Transformations

Definition

A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Definition

A transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

A Theorem About Linear Transformations:

Theorem:

If T is a linear transformation, then
(i) $T(\mathbf{0})=\mathbf{0}$, and
(ii) $T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})$
for any scalars c, and d and vectors \mathbf{u} and \mathbf{v}.

Remark: This second statement says:
The image of a linear combination is the linear combination of the images.
It can be generalized to an arbitrary linear combination ${ }^{1}$

$$
T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right)
$$

${ }^{1}$ This is called the principle of superposition.

Comment on Notation

Recall that the vector $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ in \mathbb{R}^{n} can be written using the
notation

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ might be written using this sort of notation. For example, if $T(\mathbf{x})=\mathbf{y}$, this might be written like

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{m}\right) .
$$

Example: For each transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Determine
(i) The values of m and n, and
(ii) whether the transformation is linear or nonlinear.
(a) $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-2 x_{2}, 1-x_{3}\right) \quad T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ $n=3 \quad m=2$
Look (a) $T(\overrightarrow{0}), T(0,0,0)=(0-2(0), 1-0)=(0,1)$

$$
\neq \overrightarrow{0}
$$

T is not a linear trans formation.

Example
(b)

$$
\begin{aligned}
& T\left(x_{1}, x_{2}\right)=\left(x_{1}+2 x_{2}, 0,0,3 x_{2}\right) \\
& n=2 \quad m=4 \\
& \text { Is } T \text { linear? } T(\overrightarrow{0})=T(0,0)=(0+2(0), 0,0,3(0)) \\
& =(0,0,0,0)=0
\end{aligned}
$$

Let's check the properties.
Let $\vec{u}=(a, b)$ and $\vec{v}=(x, y)$

$$
\begin{gathered}
\vec{u}+\vec{v}=(a+x, b+y) \\
T(\vec{u})=T(a, b)=(1+2 b, 0,0,3 b)
\end{gathered}
$$

$$
\begin{aligned}
T(\vec{v})=T(x, y) & =(x+2 y, 0,0,3 y) \\
T(\vec{u}+\vec{v}) & =T(a+x, b+y) \\
& =(a+x+2(b+y), 0,0,3(b+b)) \\
& =(a+2 b+x+2 y, 0,0,3 b+3 y) \\
& =(a+2 b, 0,0,3 b)+(x+2 y, 0,0,3 y) \\
& =T(\vec{u})+T(\vec{v})
\end{aligned}
$$

Let k be ony recl numben．

$$
\begin{aligned}
T(k \vec{u}) & =T(k a, k b) \\
& =(k a+2 k b, 0,0,3 k b)
\end{aligned}
$$

$$
\begin{aligned}
& =(k(a+2 b), k(0), k(0), k(3 b)) \\
& =k(a+2 b, 0,0,3 b) \\
& =k T(\vec{u})
\end{aligned}
$$

Hence T is a line er trans formation.

An Example on \mathbb{R}^{2}
Let $r>0$ be a scalar and consider the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=r \mathbf{x}
$$

This transformation is called a dilation if $r>1$ and a contraction if $0<r<1$.

Exercise: Show that T is a linear transformation.
Lit \vec{u}. and \vec{V} be any vectors in \mathbb{R}^{2} and C any scalar.

$$
\begin{aligned}
& T(\vec{u})=r \vec{u}, \quad T(\vec{v})=r \vec{v} \\
& T(\vec{u}+\vec{v})=r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}=T(\vec{u})+T(\vec{v})
\end{aligned}
$$

$$
T(c \vec{u})=r(c \vec{u})=c r \vec{u}=c T(\vec{u})
$$

The Geometry of Dilation/Contraction

Figure: The 2×2 square in the plane under the dilation $\mathbf{x} \mapsto 2 \mathbf{x}$ (top) and the contraction $\mathbf{x} \mapsto \frac{1}{2} \mathbf{x}$ (bottom). Each includes an example of a single vector and its image.

Example

Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and for the vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{2}, it is known that

$$
T(\mathbf{u})=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad \text { and } \quad T(\mathbf{v})=\left[\begin{array}{r}
-2 \\
2
\end{array}\right]
$$

Evaluate each of

1. $T(2 \mathbf{u})=2 T(\vec{u})=2\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 6\end{array}\right]$
2. $T\left(\frac{1}{4} \mathbf{v}\right)=\frac{1}{4} T(\vec{v})=\frac{1}{4}\left[\begin{array}{c}-2 \\ 2\end{array}\right]=\left[\begin{array}{c}-1 / 2 \\ 1 / 2\end{array}\right]$
3. $T(3 \mathbf{u}-2 \mathbf{v})=3 T(\vec{u})-2 T(\vec{v})=3\left[\begin{array}{l}1 \\ 3\end{array}\right]-2\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}7 \\ 5\end{array}\right]$
