February 7 Math 3260 sec. 52 Spring 2022

Section 1.5: Solution Sets of Linear Systems

- We defined a linear system, Ax = b as being homogeneous if the right hand side is the zero vector, i.e. b = 0.
- A homogeneous system Ax = 0 always has at least one solution,
 x = 0, called the trivial solution.
- And it will have nontrivial solutions if and only if it has at least one free variable.

イロト イポト イヨト イヨト

February 3, 2022

Examples

We set up and row reduced the augmented matrix to get

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We expressed the solution set (a line in \mathbb{R}^3) in **parametric vector form**

$$\mathbf{x} = s \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$$
 where *s* is any real number.

Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

$$3x_{1} + 5x_{2} - 4x_{3} = 7$$

$$-3x_{1} - 2x_{2} + 4x_{3} = -1$$

$$6x_{1} + x_{2} - 8x_{3} = -4$$

$$(3 - 3 - 2 - 4)$$

$$(3 - 3 - 2 - 4)$$

$$(3 - 3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

$$(3 - 4)$$

The equation r for this ref are

$$X_1 - \frac{4}{3}X_3 = -1$$

 $X_2 = Z$

February 3, 2022 3/29

The solution set is $X_1 = -1 + \frac{1}{3}X_3$ $X_2 = 2$ X_3 is free

Let's write this in parametric vector form.

The salutions $\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -1 + \frac{\eta}{3} \chi_3 \\ z \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -1 \\ z \\ 0 \end{bmatrix} + \begin{bmatrix} 9/3\chi_3 \\ 0 \\ \chi_3 \end{bmatrix}$

 $= \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + \chi_3 \begin{pmatrix} \gamma/3 \\ 0 \\ 1 \end{pmatrix}$

イロト イポト イヨト イヨト 二日

lue con with the solution of in panametric vector form as

$$\dot{X} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix} , t \in \mathbb{R}.$$

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

 $\mathbf{x} = \mathbf{p} + t\mathbf{v}$

with **p** and **v** fixed vectors and *t* a varying parameter. Also note that the t**v** part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

p is called a **particular solution**, and *t***v** is called a solution to the associated homogeneous equation.

February 3, 2022

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given **b**. Let **p** be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h,$$

where \mathbf{v}_h is any solution of the associated homogeneous equation $A\mathbf{x} = \mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

February 3, 2022

Example

Find the solution set of the following system. Express the solution set in parametric vector form.

 $x_1 + x_2 - 2x_3 + 4x_4 = 1$ $2x_1 + 3x_2 - 6x_3 + 12x_4 = 4$ We can use an originarted matrix. $\begin{bmatrix} 1 & 1 & -2 & 4 & 1 \\ 2 & 3 & -6 & 12 & 4 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -2 & 4 & 2 \end{bmatrix}$ The system from the reef is $X_{1} = -1$ $X_{2} - 2X_{3} + 4X_{4} = 2$

The solutions are given by $X_{1} = -1$ $X_{2} = Q + ZX_{3} - UX_{4}$ X3, X4 are free Going to panameter vector form $\vec{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 + 2X_3 - 4X_4 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2X_7 \\ X_3 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -4X_4 \\ 0 \\ X_4 \end{pmatrix}$ $= \begin{bmatrix} -1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + X_4 \begin{bmatrix} 0 \\ -4 \\ 0 \\ 1 \end{bmatrix}$ イロン イボン イヨン 一日 February 3, 2022 10/29

We can express the solutions as $\vec{X} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -4 \\ 0 \\ 1 \end{bmatrix}, s, t \in \mathbb{R}.$

イロン イボン イヨン 一日

Section 1.7: Linear Independence

We already know that a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}.$$

February 3, 2022

12/29

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$ always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Definition: Linear Independence

Definition: An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

If a set of vectors is not linearly independent, we say that it is **linearly** dependent.

Linear Dependence & Independence

We can restate this definition:

The set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights $c_1, c_2, ..., c_p$, at least one of which is nonzero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

Remark: The condition on the *c*'s not all being zero is the same thing as saying the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p = \mathbf{0}$ has a **nontrivial** solution.

Definition: An equation $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

Theorem on Linear Independence

Theorem: The columns of a matrix *A* are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Remark: This follows directly from the definition of linear independence. It gives a characterization of the columns of a matrix as a set of vectors.

Example

Determine if the set is linearly dependent or linearly independent.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 2\\ 4 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\ -2 \end{bmatrix}$$

We can see the theorem above by creating
a matrix
$$A = [V, V_2]$$
. Now, we consider
the honogeneous egn. $AX = \vec{0}$. Using
an augmented matrix,
 $\begin{bmatrix} 2 & 1 & 0 \\ 4 & -2 & 0 \end{bmatrix} \xrightarrow{\text{cref}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
The system from the ref is $X_1 = 0$

February 3, 2022 16/29

э

イロト イヨト イヨト イヨト

February 3, 2022 17/29

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Example

Determine if the set is linearly dependent or linearly independent.

(b)
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
Notice that $\vec{v}_3 = \vec{v}_1 + \vec{v}_2$. This can be
arranged to give the finear dependence
relation $\vec{v}_1 + \vec{v}_2 - \vec{v}_3 = \vec{0}$
This has the form
 $C_1 \vec{v}_1 + C_2 \vec{v}_2 + C_3 \vec{v}_3 = \vec{0}$

• • • • • • • • • • • •

February 3, 2022

where $C_1 = C_2 = 1$ and $C_3 = -1$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○