February 8 Math 2306 sec. 52 Spring 2023

Section 5: First Order Equations Models and Applications

Figure: Mathematical Models give Rise to Differential Equations

Current Models

We have

$$
\text { Exponential Growth/Decay } \frac{d P}{d t}=k P
$$

RC-Series Circuit $\quad R \frac{d q}{d t}+\frac{1}{C} q=E(t)$
LR-Series Circuit $\quad L \frac{d i}{d t}+R i=E(t)$

A Classic Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

A Classic Mixing Problem

Figure: Spatially uniform composite fluids (e.g. salt \& water, gas \& ethanol) being mixed. Concentrations of substance change in time.

Building an Equation

The rate of change of the amount of salt

$$
\frac{d A}{d t}=\binom{\text { input rate }}{\text { of salt }}-\binom{\text { output rate }}{\text { of salt }}
$$

The input rate of salt is

$$
\text { fluid rate in } \cdot \text { concentration of inflow }=r_{i}\left(c_{i}\right)
$$

The output rate of salt is
fluid rate out \cdot concentration of outflow $=r_{0}\left(c_{0}\right)$.

$$
r_{i}, r_{0}, c_{i} \text { are givens }
$$

Building an Equation

$$
\begin{aligned}
& \text { Vdume } V(t)=V(0)+r_{i} t-r_{0} t \\
& \text { intion volure } \rightarrow \text {. }
\end{aligned}
$$

The concentration of the outflowing fluid is

$$
\begin{gathered}
C_{0}=\frac{\text { total salt }}{\text { total volume }}=\frac{A(t)}{V(t)}=\frac{A(t)}{V(0)+\left(r_{i}-r_{0}\right) t} . \\
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{0} \frac{A}{V} .
\end{gathered}
$$

This equation is first order linear.

$$
\frac{d A}{d t}+\frac{r_{0}}{v} A=r_{i} c_{i} \quad, A(0)=r_{a^{2}}
$$

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

$$
\begin{aligned}
& V(0)=500 \mathrm{gd}, A(0)=016 \quad \text { (pe water) } \\
& C_{i}=2 \frac{1 b}{g d}, r_{i}=5 \frac{g a}{\text { mon }}, r_{0}=5 \frac{\text { gal }}{\mathrm{min}}
\end{aligned}
$$

The volume $V(t)=V(0)+\left(r_{i}-r_{0}\right) t$

$$
C_{0}=\frac{A}{V}=\frac{A}{500} \frac{\mathrm{lb}}{50 l}
$$

$$
\begin{aligned}
\frac{d A}{d t} & =r_{i} c_{i}-r_{0} c_{0} \\
& =5(2)-5\left(\frac{A}{s 00}\right) \\
\frac{d A}{d t} & +\frac{1}{100} A=10, A(0)=0 \\
P(t)=\frac{1}{100}, \mu & =e^{\int p(t) 2 t}=e^{\int \frac{1}{100} d t}=e^{\frac{1}{100} t} \\
\frac{d}{d t}\left(e^{\frac{1}{100} t} A\right) & =10 e^{\frac{1}{100 t}} \\
\int \frac{d}{d t}\left(e^{\frac{1}{100} t} A\right) d t & =\int 10 e^{\frac{1}{100} t} d t
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{1}{100} t} A=10(100) e^{\frac{1}{100} t}+k \\
& A=\frac{1000 e^{\frac{1}{100} t}+k}{e^{\frac{1}{100} t}}
\end{aligned}
$$

Apply $\quad A(0)=0$

$$
\begin{aligned}
A(0)=0 & =1000+k e^{0} \\
k & =-1000
\end{aligned}
$$

The amount of salt in the tanh is

$$
A(t)=1000-1000 e^{\frac{-1}{100} t}
$$

After s mimites, the concentration in the tank is

$$
\begin{aligned}
& \text { the tank is } \\
& C=\frac{A(5)}{V(s)}=\frac{1000-1000 e^{\frac{-1}{100}(5)}}{500} \approx 0.01 \frac{16}{\mathrm{sal}}
\end{aligned}
$$

Let's look at the concentration of salt in the tank as $t \rightarrow \infty$.

$$
\lim _{t \rightarrow \infty} \frac{A}{V}=\lim _{t \rightarrow \infty} \frac{1000-1000 e^{-\frac{1}{100} t}}{500}=2 \frac{1 b}{\mathrm{sl}}
$$

$$
r_{i} \neq r_{0}
$$

Suppose that instead, the mixture is pumped out at $10 \mathrm{gal} / \mathrm{min}$. Determine the differential equation satisfied by $A(t)$ under this new condition.

$$
\begin{aligned}
& r_{i}=5, \quad C_{i}=2 \quad r_{0}=10 \\
& V(t)=V(0)+\left(r_{i}-r_{0}\right) t \\
&=500+(5-10) t \\
&=500-5 t \\
& C_{0}=\frac{A}{V}=\frac{A}{500-5 t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d A}{d t} & =r_{i} C_{i}-s_{0} C_{0} \\
& =5(2)-10\left(\frac{A}{500-5 t}\right) \\
\frac{d A}{d t}+ & \frac{2}{100-t} A=10
\end{aligned}
$$

