February 9 Math 3260 sec. 52 Spring 2022

Section 1.7: Linear Independence

Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. If a set of vectors is not linearly independent, we say that it is linearly dependent.

Definition: An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $\mathbf{A x}=\mathbf{0}$ has only the trivial solution.

Example
Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.
(c) $\left\{\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right]\right\}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{u}\right\}$

$$
\vec{v}_{1} \stackrel{\jmath}{ } \vec{v}_{2}^{\jmath}
$$

we can create a matrix $A=\left[\begin{array}{llll}\vec{V}_{1} & \vec{V}_{2} & \vec{V}_{3} & \vec{V}_{4}\end{array}\right]$ and consida the horogereous equation $A \vec{x}=\overrightarrow{0}$. The system has augmented matrix

$$
\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 2 & 0 \\
0 & 1 & 3 & 0 & 0
\end{array}\right] \xrightarrow{\operatorname{ref}} \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & \frac{1}{3} & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 / 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

we have a free variable, hence $A \vec{x}=\overrightarrow{0}$ has non trivial solutions.
we conclude that its columns, $\left\{\bar{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \bar{v}_{4}\right\}$ is linearly dependent.

To get a linear dependence relation, from the ret, we have

$$
\begin{aligned}
& x_{1}=\frac{-1}{3} x_{4} \\
& x_{2}=-2 x_{4} \\
& x_{3}=\frac{2}{3} x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

Hence

$$
-\frac{1}{3} x_{4} \vec{V}_{1}-2 x_{4} \vec{V}_{2}+\frac{2}{3} x_{4} \vec{V}_{3}+x_{4} \vec{V}_{4}=\overrightarrow{0}
$$

for any red number x_{n} ．We get a line or dependence relation by choosing any nonzero value for X_{4} ．Setting $X_{4}=-3$ ，we get

$$
\vec{v}_{1}+6 \vec{v}_{2}-2 \vec{v}_{3}-3 \vec{v}_{4}=\overrightarrow{0}
$$

ignores
column 5
colum（ard sot

$$
\left.\begin{array}{l}
\quad l^{\text {ard }} \\
{\left[\begin{array}{ccccc}
1 & 0 & 0 & \frac{1}{3} & 0 \\
\vec{V}_{2} & \vec{V}_{3} \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 / 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \vec{x}_{1}} \\
x_{2} \\
x_{1}
\end{array}\right]=\vec{V}_{4}=\frac{1}{3} \vec{V}_{1}+2 \vec{V}_{2}-\frac{2}{3} \vec{V}_{3} \Rightarrow \vec{V}_{4} \Rightarrow \quad \Rightarrow \quad \begin{array}{r}
\frac{1}{3} \vec{V}_{1}+2 \vec{V}_{2}-\frac{2}{3} \vec{V}_{3}-\vec{V}_{4}=\overrightarrow{0}
\end{array}
$$

Theorem

Theorem: An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example Problem

Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^{3}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Note: This problem asks us to prove that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

We know that $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$, but we don't know anything about what the entries are, and we know that wis in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.

$$
\begin{aligned}
& \text { Since } \vec{w} \text { is in } S_{p a n}\{\vec{u}, \vec{v}\} \text {, we know that } \\
& \vec{w}=c_{1} \vec{u}+\vec{c}_{2} \vec{v} \text { for some numbers } c_{1} \text { and } c_{2} \text {. }
\end{aligned}
$$

If we subtract \bar{w} from both sides, we get a linear dependence relation

$$
c_{1} \vec{u}+c_{2} \vec{v}-\vec{w}=\overrightarrow{0} .
$$

Note the coefficient of \vec{W} is -1 which is nonzero.

Hence $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Each set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$, and $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. (You can easily verify this.)

However,

$$
\mathbf{v}_{3}=\mathbf{v}_{2}-\mathbf{v}_{1} \quad \text { i.e. } \quad \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}
$$

so the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent.
This means that you can't just consider two vectors at a time.

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

For example, if you have 7 vectors,

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}, \mathbf{v}_{7}\right\},
$$

and each of these is a vector in \mathbb{R}^{5},

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
v_{11} \\
v_{21} \\
v_{31} \\
v_{41} \\
v_{51}
\end{array}\right] \quad \text { and so forth, }
$$

then they must be linearly dependent because $7,>5$,

Two More Theorems

Theorem: Any set of vectors that contains the zero vector is linearly dependent.

This says that no matter what the other vectors are, if the zero vector 0 is part of your set of vectors, the set is automatically linearly dependent.

Determine if the set is linearly dependent or linearly independent
(a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]\right\}$

This set is dependant. Then are 4 vector from $\mathbb{R}^{3}, y>3$.

Determine if the set is linearly dependent or linearly independent
(b) $\left\{\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ -8 \\ 1\end{array}\right],\right\}$
\vec{O} is included, this set is linearly dependent.

