February 9 Math 3260 sec. 52 Spring 2024

Section 1.9: The Matrix for a Linear Transformation

Recall Linear Transformation

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** provided for every vector **u** and **v** in \mathbb{R}^n and every scalar c

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}),$$
 and

$$T(c\mathbf{u}) = cT(\mathbf{u}).$$

Two Remarks

- 1. Any mapping defined by matrix multiplication, $\mathbf{x} \mapsto A\mathbf{x}$, is a linear transformation.
- 2. Every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be realized in terms of matrix multiplication.

Elementary Vectors

Definition: Elementary Vectors

We'll use the notation \mathbf{e}_i to denote the vector in \mathbb{R}^n having a 1 in the i^{th} position and zero everywhere else. The vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are called **elementary** vectors.

For example, the elementary vectors in $\ensuremath{\mathbb{R}}^2$ are

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The elementary vectors in \mathbb{R}^3 are

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right].$$

2/22

Elementary Vectors

Remark:

In general, the elementary vectors are the columns of the $n \times n$ identity matrix.

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \cdots, \boldsymbol{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$I_n = [\mathbf{e}_1 \; \mathbf{e}_2 \; \cdots \; \mathbf{e}_n]$$

Matrix of Linear Transformation: an Example

Suppose $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ is a linear transformation, and that

$$T(\mathbf{e}_1) = \left[egin{array}{c} 0 \\ 1 \\ -2 \\ 4 \end{array}
ight], \quad ext{and} \quad T(\mathbf{e}_2) = \left[egin{array}{c} 1 \\ 1 \\ -1 \\ 6 \end{array}
ight].$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix}$$
Let $\overrightarrow{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ be any verter in \mathbb{R}^2 .

$$T(\dot{x}) = T(x, \dot{e}, + x_2 \dot{e}_2)$$

$$= \chi_1 \top (\vec{e}_1) + \chi_2 \top (\vec{e}_2)$$

$$= \chi_1 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \chi_2 \begin{bmatrix} 1 \\ 1 \\ 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -1 \\ 4 & -6 \end{bmatrix}$$

this is
$$T(\tilde{e}_2)$$

Standard Matrix of a Linear Transformation

Theorem

Let $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ be a linear transformation. There exists a unique $m\times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the j^{th} column of the matrix A is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j^{th} column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

The matrix A is called the **standard matrix** for the linear transformation T.

Example

Let $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ be the scaling transformation (contraction or dilation for r>0) defined by

$$T(\mathbf{x}) = r\mathbf{x}$$
, for positive scalar r .

Find the standard matrix for T.

$$T(\vec{e}_z) = r\vec{e}_z = r \left(0\right) = \left(0\right)$$

Hence A= [0 0].

9/22

A Shear Transformation on \mathbb{R}^2

Find the standard matrix for the linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$ that maps \mathbf{e}_2 to $\mathbf{e}_2 - \frac{1}{2}\mathbf{e}_1$ and leaves \mathbf{e}_1 unchanged.

Let's call the transformation
$$S$$
.

Calling the matrix A , $A = [S(\vec{e}_1) S(\vec{e}_2)]$
 $S(\vec{e}_1) = \vec{e}_1 = [0]$
 $S(\vec{e}_2) = \vec{e}_2 - \frac{1}{2}\vec{e}_1 = [0] - \frac{1}{2}[0] = [-1/2]$

The matrix $A = \begin{bmatrix} 1 & -1/2 \\ 0 & 1 \end{bmatrix}$.

A Shear Transformation on \mathbb{R}^2

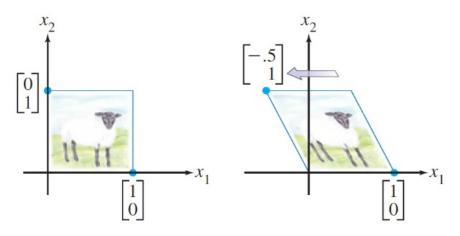
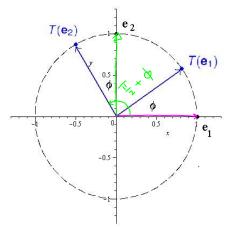


Figure: The unit square under the transformation $\mathbf{x}\mapsto \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}\mathbf{x}$.

A Rotation on \mathbb{R}^2

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for T.



Using some basic trigonometry, the points on the unit circle

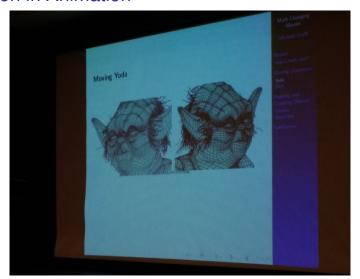
$$T(\mathbf{e}_1) = (\cos \phi, \sin \phi)$$

$$T(\mathbf{e}_2) = (\cos(90^\circ + \phi), \sin(90^\circ + \phi))$$

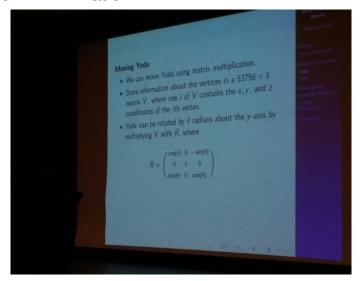
$$= (-\sin \phi, \cos \phi)$$

So
$$A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$
.

Rotation in Animation



Rotation in Animation



Rotation in Curve Generation

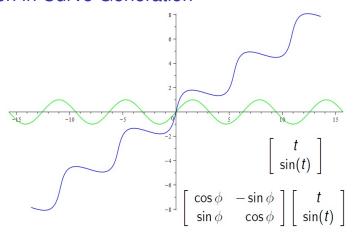


Figure: The curve $y = \sin(x)$ plotted as a vector valued function along with a version rotated through and angle $\phi = \frac{\pi}{6}$.

Onto and One to One

Definition

A mapping $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of T is all of the codomain.

Definition

A mapping $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

Some Theorems about Onto and One to One

Theorem:

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem:

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then

- (i) T is onto if and only if the columns of A span \mathbb{R}^m , and
- (ii) *T* is one to one if and only if the columns of *A* are linearly independent.

Remarks

Suppose $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation and A is the standard matrix for T.

- ▶ If *T* is **onto**, then
 - ▶ the range of T is \mathbb{R}^m ,
 - ▶ the equation $T(\mathbf{x}) = \mathbf{b}$ is always solvable,
 - the system $A\mathbf{x} = \mathbf{b}$ is always consistent.
- ▶ If T is one to one, then
 - $T(\mathbf{x}) = T(\mathbf{y})$ implies that $\mathbf{x} = \mathbf{y}$,
 - \triangleright $A\mathbf{x} = \mathbf{0}$ has no free variables.

