January 10 Math 3260 sec. 51 Spring 2022

A Random Motivational Example

In a certain city, ABC shipping has one receiving (A) and two distribution hubs (B & C). On a given day, 80 packages enter center A and will be distributed to hubs B and C for delivery. Twenty packages will go to a major client from hub C, the rest are to be distributed in quantities x_1, \ldots, x_4 among the hubs and out for delivery.

Motivating Example

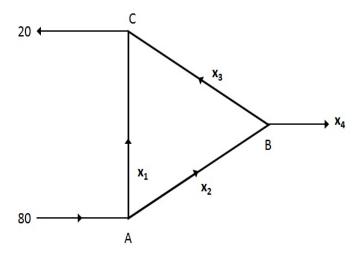


Figure: Distribution Scheme

3) 3

Equations for Package Quantities

Assuming all of the packages are delivered to customers outside of the shipping company, the quantities x_1, \ldots, x_4 have to satisfy the equations

Questions

- Is there a set of numbers x₁,..., x₄ that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- If we could find numbers x₁,..., x₄, and then the input 80 changed (say on another day), do we have to do all the work again? Or is there a way to generalize our finding?

January 10, 2022

4/18

(This is just to illustrate the kinds of questions addressed by **Linear Algebra**. We'll leave answering these questions for another day.)

We'll work in a variety of settings...

Two main abstractions we'll be interested in are **Linear Transformations** and **Vector Spaces**.

< ロ > < 同 > < 回 > < 回 >

Section 1.1: Systems of Linear Equations

We begin with a linear (*algebraic*) equation in *n* variables $x_1, x_2, ..., x_n$ for some positive integer *n*.

A linear equation can be written in the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b.$$

The numbers a_1, \ldots, a_n are called the *coefficients*. These numbers and the right side *b* are real (or complex) constants that are **known**.

January 10, 2022

6/18

Linear Equation in *n* Variables

$a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.$

Notice the main structure on the left side. The unknowns/variables (x_1,\ldots,x_n) are

- multipled by numbers (a.k.a. coefficients), and
- added together.

Other types of actions (squaring, multiplying variables, taking variable's reciprocal, etc.) aren't allowed if an equation is **linear**.

> January 10, 2022

7/18

Examples of Equations that are or are not Linear

$$2x_1 = 4x_2 - 3x_3 + 5$$
 and $12 - \sqrt{3}(x + y) = 0$

These equations are linear.

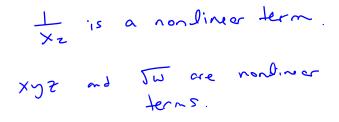
The first can be written as $2x_1 - 4x_2 + 3x_3 = 5$ The second can be written as $\sqrt{3} \times + \sqrt{3} \times = 12$

January 10, 2022 8/18

Examples of Equations that are or are not Linear

$$x_1 + 3x_3 = \frac{1}{x_2}$$
 and $xyz = \sqrt{w}$

These equations are NOT linear.



◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

A *Linear System* is a collection of linear equations in the same variables

Example 1:
$$2x_1 + x_2 - 3x_3 + x_4 = -3$$
$$-x_1 + 3x_2 + 4x_3 - 2x_4 = 8$$

Example 1 is a linear system that has two equations in four variables.

Example 2:

$$x + 2y + 3z = 4$$

 $3x + 12z = 0$
 $2x + 2y - 5z = -6$

January 10, 2022

10/18

Example 2 is a linear system that has three equations in three variables.