January 10 Math 3260 sec. 51 Spring 2022

A Random Motivational Example

In a certain city, $A B C$ shipping has one receiving (A) and two distribution hubs (B \& C). On a given day, 80 packages enter center A and will be distributed to hubs B and C for delivery. Twenty packages will go to a major client from hub C , the rest are to be distributed in quantities x_{1}, \ldots, x_{4} among the hubs and out for delivery.

Motivating Example

Figure: Distribution Scheme

Equations for Package Quantities

Assuming all of the packages are delivered to customers outside of the shipping company, the quantities x_{1}, \ldots, x_{4} have to satisfy the equations

$$
\begin{aligned}
x_{1}+x_{3} & =20 \\
x_{2}-x_{3}-x_{4} & =0 \\
x_{1}+x_{2} & =80
\end{aligned}
$$

Questions

- Is there a set of numbers x_{1}, \ldots, x_{4} that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- If we could find numbers x_{1}, \ldots, x_{4}, and then the input 80 changed (say on another day), do we have to do all the work again? Or is there a way to generalize our finding?
(This is just to illustrate the kinds of questions addressed by Linear Algebra. We'll leave answering these questions for another day.)

We'll work in a variety of settings...

$$
\begin{aligned}
& \begin{array}{rc}
& x_{1} \\
\text { Linear sys. } & \\
& x_{2}-x_{3} \\
x_{2} & \\
x_{2}
\end{array} \\
& \text { Matrix eqns. }\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 \\
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
20 \\
0 \\
80
\end{array}\right] \\
& \text { More Matrices }\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 20 \\
0 & 1 & -1 & -1 & 0 \\
1 & 1 & 0 & 0 & 80
\end{array}\right] \\
& \text { Vector eqns. } x_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
20 \\
0 \\
80
\end{array}\right]
\end{aligned}
$$

Two main abstractions we'll be interested in are Linear Transformations and Vector Spaces.

Section 1.1: Systems of Linear Equations

We begin with a linear (algebraic) equation in n variables $x_{1}, x_{2}, \ldots, x_{n}$ for some positive integer n.

A linear equation can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

The numbers a_{1}, \ldots, a_{n} are called the coefficients. These numbers and the right side b are real (or complex) constants that are known.

Linear Equation in n Variables

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

Notice the main structure on the left side. The unknowns/variables $\left(x_{1}, \ldots, x_{n}\right)$ are

- multipled by numbers (a.k.a. coefficients), and
- added together.

Other types of actions (squaring, multiplying variables, taking variable's reciprocal, etc.) aren't allowed if an equation is linear.

Examples of Equations that are or are not Linear

$$
2 x_{1}=4 x_{2}-3 x_{3}+5 \quad \text { and } \quad 12-\sqrt{3}(x+y)=0
$$

These equations are linear.
The first con be written as

$$
2 x_{1}-4 x_{2}+3 x_{3}=5
$$

The second con be written as

$$
\sqrt{3} x+\sqrt{3} y=12
$$

Examples of Equations that are or are not Linear

$$
x_{1}+3 x_{3}=\frac{1}{x_{2}} \quad \text { and } \quad x y z=\sqrt{w}
$$

These equations are NOT linear.
$\frac{1}{x_{2}}$ is a nonlinear term
$x y z$ and $\sqrt{\omega}$ are nonlinear terms.

A Linear System is a collection of linear equations in the same variables

$$
\text { Example 1: } \begin{aligned}
& 2 x_{1}+x_{2}-3 x_{3}+x_{4}=-3 \\
& -x_{1}+3 x_{2}+4 x_{3}-2 x_{4}=8
\end{aligned}
$$

Example 1 is a linear system that has two equations in four variables.

Example 2: \quad| $x+2 y+3 z$ | $=4$ |
| ---: | :--- |
| $3 x+12 z$ | $=0$ |
| $2 x+2 y-5 z$ | $=-6$ |

Example 2 is a linear system that has three equations in three variables.

