## January 10 Math 3260 sec. 51 Spring 2024

## Section 1.1: Systems of Linear Equations

Consider a generic linear system such as

$$
\begin{array}{rllllll}
a_{11} x_{1} & +a_{12} x_{2} & + & \cdots & +a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & + & \cdots & +a_{2 n} x_{n} & = & b_{2} \\
& \vdots & & \vdots & \cdots & \vdots &  \tag{1}\\
a_{m 1} x_{1} & +a_{m 2} x_{2} & + & \cdots & +a_{m n} x_{n} & = & b_{m} .
\end{array}
$$

We defined

- a linear equation and a linear system,
- solution and solution set for a linear system, and
- equivalent systems.


## The Geometry of 2 Equations with 2 Variables





Figure: The geometry of a system of two equations in two variables is easy to see.

While the geometry is more complex-or even beyond visible representation-the basic trichotomy generalizes to all linear, algebraic systems.

## Theorem

## Theorem

For a linear system, exactly one of the following holds. The system has
i no solution, or
ii exactly one solution, or
iii infinitely many solutions.

A system is called inconsistent if it does not have any solutions (case i), and it's called consistent if it has any solution(s) (cases ii \& iii).

Note: This theorem speaks to those two big questions:

- Existence: Is there a solution/does a solution exist?
- Uniqueness: Is there a unique solution or multiple solutions?


## 3 Equations in 3 Variables



Figure: The graph of $a x+b y+c z=d$ is a plane. Three may (a) intersect in a single point, (b) intersect in infinitely many points, or (c) not intersect in various ways.

## Matrices

## Definition: Matrix

A matrix is a rectangular array of numbers. The size (or dimension) of a matrix is written like $m \times n$ (read " $m$ by $n$ ") where $m$ is the number of rows and $n$ is the number of columns of the matrix.

Examples:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
2 & 0 & -1 & 3 \\
1 & 1 & 13 & -4 \\
12 & -3 & 2 & -2
\end{array}\right],} \\
3 \times 4
\end{gathered} \begin{array}{cc}
{\left[\begin{array}{cc}
2 & 0 \\
4 & 4 \\
3 & -5
\end{array}\right]} \\
3 \times 2
\end{array}
$$

## Linear System \& Matrices

Given any linear system of equations, we can associate two matrices with the system. These are the coefficient matrix and the augmented matrix.

Example: $\begin{gathered}x_{1}+2 x_{2}-x_{3}=-4 \\ 2 x_{1}+x_{3}=7 \\ \\ x_{1}+x_{2}+x_{3}=6\end{gathered}$

Before we start to set up these matrices, we write our system in the form shown above. Note that all variables are on the left side, and like variables have the same order in each equation (they are aligned vertically).

Linear System: Coefficient Matrix
The coefficient matrix has one row for each equation and one column for each variable. The entries are the coefficients of the variables in our system.

Example:

$$
\begin{array}{rlr}
x_{1}+2 x_{2}-x_{3}=-4 & m=\# \text { of } \\
2 x_{1} & =x_{3}=7 & \\
x_{1}+x_{2}+x_{3}=6 & n=\# \text { of variables }
\end{array}
$$

Acre, $3 x^{3}$

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Linear System: Augmented Matrix
The augmented matrix has one row for each equation, one column for each variable, and one extra, right most column. The entries in the first columns match the coefficient matrix, and the right most column has the numbers from the right hand side of each equation.

Example:

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{3}=-4 \\
2 x_{1} \\
x_{1}+x_{3}=7
\end{gathered} \quad \begin{gathered}
m=\# \text { of equations } \\
x_{1}+x_{3}=6
\end{gathered} \quad \begin{aligned}
& n=\text { of variable } \\
&+1
\end{aligned}
$$

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

Here, $m=3$

$$
\begin{aligned}
& n=3+1 \\
& \text { so } 3 \times 4
\end{aligned}
$$

## Legitimate Operations for Solving a System

There are three operations that we can perform on a system of equations that result in an equivalent system. We can use these operations to eliminate variables. We can

- swap the order of any two equations,
- scale an equation by multiplying it by any nonzero number, and
- replace an equation with the sum ${ }^{1}$ of itself and a nonzero multiple of any other equation.

We will use some standard notation for these operations. Let's call the first equation $E_{1}$, the second equation $E_{2}$ and so forth.

[^0]
## Swap

To indicate that we are swapping equations $E_{i}$ and $E_{j}$, we'll write

$$
E_{i} \leftrightarrow E_{j}
$$

For example

$$
\left.\begin{array}{rl}
x_{1}+2 x_{2}-x_{3} & =-4 \\
2 x_{1} & \\
x_{1} & =7 \\
x_{1}+x_{3}+x_{3} & =6
\end{array}+\begin{array}{l}
x_{1} \leftrightarrow E_{3}+x_{2}+x_{3}=6 \\
2 x_{1} \\
x_{1}+2 x_{2}-x_{3}
\end{array}\right)=-4
$$

## Scale

To indicate that we are scaling equation $E_{i}$ by the nonzero factor $k$, we'll write

$$
k E_{i} \rightarrow E_{i}
$$

For example

$$
\left.\begin{array}{c}
x_{1}+2 x_{2}-x_{3}=-4 \\
2 x_{1} \\
x_{1}+x_{3}=7
\end{array}+\begin{array}{rlllll}
x_{1} & +2 x_{2}-x_{3} & = & -4 \\
2 x_{1}
\end{array}\right)
$$

## Replace

To indicate that we are replacing equation $E_{j}$ with the sum of itself adn $k$ times equation $E_{i}$, we'll write

$$
k E_{i}+E_{j} \rightarrow E_{j}
$$

For example

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=-4 \\
& 2 x_{1}+x_{3}=7 \\
& x_{1}+x_{2}+x_{3}=-2 E_{1}+E_{2} \rightarrow E_{2}+2 x_{2}-x_{3}=x_{3}=4 \\
& x_{1}+4 x_{2}+3 x_{3}=15 \\
& x_{2}+x_{3}= \\
& \hline
\end{aligned}
$$

Note

$$
\begin{array}{rr}
-2 x_{1}-4 x_{2}+2 x_{3} & =8 \\
2 x_{1} & \\
+ & x_{3}
\end{array}=7 / 7
$$

## Example

Use some sequence of these three operations to solve the following system by eliminating variables). Keep track of the augmented matrix at each step.

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=-4 \\
2 x_{1}+x_{3}=7 \\
x_{1}+x_{2}+x_{3}=6
\end{array} \quad\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

We can use $x_{1}$ in the first equation to eliminate $x_{1}$ from equations $E_{2}$ and $E_{3}$. Perform $-2 E_{1}+E_{2} \rightarrow E_{2}$ and then $-E_{1}+E_{3} \rightarrow E_{3}$.

$$
\begin{aligned}
& -2 E_{1}+E_{2} \rightarrow E_{2} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
& -4 x_{2}+3 x_{3}=15 \\
& x_{1}+x_{2}+x_{3}=6
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -4 & 3 & 15 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

$$
\begin{aligned}
& -E_{1}+E_{3} \rightarrow E_{3} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
& -4 x_{2}+3 x_{3}=15 \\
& -x_{2}+2 x_{3}=10 \\
& E_{2} \leftrightarrow E_{3} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
& -x_{2}+2 x_{3}=10 \\
& -4 x_{2}+3 x_{3}=15 \\
& -4 E_{2}+E_{3} \rightarrow E_{3} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
& -x_{2}+2 x_{3}=10 . \\
& {\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -4 & 3 & 15 \\
0 & -1 & 2 & 10
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -1 & 2 & 10 \\
0 & -4 & 3 & 15
\end{array}\right]}
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
-5 x_{3} & =-25 \\
-\frac{1}{5} E_{3} \rightarrow E_{3} \\
x_{1}+2 x_{2}-x_{3} & =-4 \\
-x_{2}+2 x_{3} & =10 \\
x_{3} & =5 \\
0 & -1 \\
0 & 0 \\
0 & -5
\end{array}\right]-25\right]
$$

$$
\begin{array}{rl}
-E_{2} \rightarrow E_{2} \\
x_{1}+2 x_{2} & =1 \\
x_{2} & =0 \\
x_{3} & =5 \\
-2 E_{2}+E_{1} \rightarrow E_{1} \\
x_{1} & =1 \\
x_{2} & =0 \\
0 & 1 \\
x_{3} & =5
\end{array} \quad\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1
\end{array}\right]
$$

From this equivalent system, we see that the system has exactly one solution, $(1,0,5)$.

## Elementary Row Operations

Elementary row operations are operations we can perform on the rows of a matrix. There are three of them, and they are analogous to operations on the equations in a system. We use a similar notation using $R_{i}$ for the $i^{\text {th }}$ row.

## Elementary Row Operations

i Interchange row $i$ and row $j$ (swap), $R_{i} \leftrightarrow R_{j}$.
ii Multiply row $i$ by any nonzero constant $k$ (scale), $k R_{i} \rightarrow R_{i}$.
iii Replace row $j$ with the sum of itself and $k$ times row $i$ (replace), $k R_{i}+R_{j} \rightarrow R_{j}$.

## Row Equivalent Matrices

## Definition

Two matrices are called row equivalent if one can be obtained from the other by performing a sequence of elementary row operations.

## Theorem

If the augmented matrices of two linear systems of equations are row equivalent, then the linear systems of equations are equivalent (i.e., they have the same solution set).

A key here is structure!
Consider the following augmented matrix. Determine if the associated system is consistent or inconsistent. If it is consistent, determine the solution set.

The system is
(a) $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

$$
\begin{aligned}
& 1 x_{1}+0 x_{2}+0 x_{3}=3 \\
& 0 x_{1}+1 x_{2}+0 x_{3}=1 \\
& 0 x_{1}+0 x_{2}+1 x_{3}=-2
\end{aligned}
$$

The system is consistent, and the solution

$$
\text { is } \quad(3,1,-2) \text {. }
$$

(b) $\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 3\end{array}\right]$

$$
\rightarrow \quad \begin{aligned}
1 x_{1}+2 x_{2}+0 x_{3} & =3 \\
0 x_{1}+1 x_{2}-1 x_{3} & =4 \\
0 x_{1}+0 x_{2}+0 x_{3} & =3
\end{aligned}
$$

The system is inconsistent.
At least one equation cart be satisfied.
(c) $\left[\begin{array}{cccc}1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
1 x_{1}+0 x_{2}-2 x_{3}=-3
$$

$$
0 x_{1}+1 x_{2}+1 x_{3}=4
$$

$$
O x_{1}+O x_{2}+O x_{3}=0
$$

The system is consistent.

$$
\begin{array}{r}
\sim=0 \text { always } \\
\text { is true }
\end{array}
$$

The solutions satisfy

$$
\begin{aligned}
& x_{1}=-3+2 x_{3} \\
& x_{2}=4-x_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\right. \\
& x_{1}=-3+2 x_{3} \text { and } \\
& \left.x_{2}=4-x_{3}\right\}
\end{aligned}
$$

and $x_{3}$ is ans number


[^0]:    ${ }^{1}$ Adding equations means adding like variables.

