January 12 Math 3260 sec. 51 Spring 2024

Last time, we saw that some equivalent systems had augmented matrices

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right], \quad\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
0 & -1 & 2 & 10 \\
0 & 0 & 1 & 5
\end{array}\right], \quad \text { and }\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

These are all row equivalent matrices. Regarding the underlying system, from

- the first, it's not obvious is the system is consistent,
- the second, it's clearly consistent and it would be easy to find the solution with a little back substitution, and
- the third, it's obviously consistent and the solution is obvious.

The latter two have a nice structure.

Section 1.2: Row Reduction and Echelon Forms

Definition

A matrix is in echelon form, also called row echelon form (ref), if it has the following properties:
i Any row of all zeros are at the bottom.
ii The first nonzero number (called the leading entry) in a row is to the right of the first nonzero number in all rows above it.
iii All entries below a leading entry are zeros. ${ }^{a}$
${ }^{a}$ This condition is superfluous but is included for clarity.
an ref

$$
\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -1 & 1 \\
0 & 0 & 7
\end{array}\right]
$$

not an ref

$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]$

Reduced Echelon Form

Definition

A matrix is in reduced echelon form, also called reduced row echelon form (rref) if it is in echelon form and has the additional properties
iv The leading entry of each row is 1 (called a leading 1), and
v each leading 1 is the only nonzero entry in its column.

$$
\begin{gathered}
\text { an rref } \\
{\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

not an rref
$\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Refs and Rrefs

Identify each matrix as being an echelon form (ref), reduced echelon form (rref) or not an echelon form.
(a) $\quad \begin{gathered}{\left[\begin{array}{ccccc}-1 & 2 & 3 & 0 & 1 \\ 0 & 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right], ~} \\ \text { ref not reet. }\end{gathered}$
(b) $\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \begin{aligned} & r^{o^{x}} \\ & \text { ar che } \\ & e^{\text {lor }} \\ & \text { for }\end{aligned}$
(c) $\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$,

(d) $\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$

Example (finding ref's and ref's)
Find an echelon form for the following matrix using elementary row operations.

$$
\begin{aligned}
& {\left[\begin{array}{lrr}
2 & 1 & 3 \\
4 & 3 & 6 \\
0 & 3 & 2
\end{array}\right]-2 R_{1}+R_{2} \rightarrow R_{2}} \\
& -4 \\
& -2 \\
& -6 \\
& {\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 3 & 2
\end{array}\right]-3 R_{2}+R_{3} \rightarrow R_{3}}
\end{aligned} \begin{aligned}
& 6 \\
& \hline
\end{aligned}
$$

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \text { This is an ref }
$$

