January 12 Math 3260 sec. 51 Spring 2024

Last time, we saw that some **equivalent systems** had augmented matrices

$$\begin{bmatrix} 1 & 2 & -1 & -4 \\ 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 & -4 \\ 0 & -1 & 2 & 10 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

These are all **row equivalent** matrices. Regarding the underlying system, from

- the first, it's not obvious is the system is consistent,
- the second, it's clearly consistent and it would be easy to find the solution with a little back substitution, and
- the third, it's obviously consistent and the solution is obvious.

The latter two have a nice structure.

Section 1.2: Row Reduction and Echelon Forms

Definition

A matrix is in <u>echelon form</u>, also called *row echelon form (ref)*, if it has the following properties:

- i Any row of all zeros are at the bottom.
- ii The first nonzero number (called the *leading entry*) in a row is to the right of the first nonzero number in all rows above it.
- iii All entries below a leading entry are zeros.^a

^aThis condition is superfluous but is included for clarity.

	an ref				
[2 0 0	1 -1 0	3 1 7		

not an ref

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 >

January 11, 2024 2/27

Reduced Echelon Form

Definition

A matrix is in <u>reduced echelon form</u>, also called *reduced row echelon form* (*rref*) if it is in echelon form and has the additional properties

- iv The leading entry of each row is 1 (called a *leading* 1), and
- v each leading 1 is the only nonzero entry in its column.

an rref	no	t an	rref
$\left[\begin{array}{rrrr}1&2&0\\0&0&1\\0&0&0\end{array}\right]$		1) 1) 0) 0	0 0 1 0

< ロ > < 同 > < 回 > < 回 >

January 11, 2024

3/27

Refs and Rrefs

Identify each matrix as being an echelon form (ref), reduced echelon form (rref) or not an echelon form.

.

(a)
$$\begin{bmatrix} -1 & 2 & 3 & 0 & 1 \\ 0 & 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ cet & vot & cret \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ revelop
for f
(c) $\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, (d) $\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Example (finding ref's and rref's)

Find an echelon form for the following matrix using elementary row operations.

$\begin{bmatrix} 2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2 \end{bmatrix} - 2R_{,+}R_{2} \rightarrow R_{2}$	- 4 - 2 - 6 4 3 6
$ \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 3 & 2 \end{bmatrix} - 3R_2 + R_3 \Rightarrow R_3 $	0-30 032.
$\begin{bmatrix} 2 & i & 3 \\ 0 & i & 0 \\ 0 & 0 & 2 \end{bmatrix}$ This is a	ref.

イロト イポト イヨト イヨト

3

5/27

January 11, 2024