January 13 Math 2306 sec. 51 Spring 2023

Section 1: Concepts and Terminology

We

- defined differential equation along with classifying variables as dependent or independent,
- classified diff. eqs. as ordinary (ODE) or partial (PDE),
- defined the order of a diff. eq.
- defined linear differential equations (as compared to nonlinear ones),
- and defined a solution (or explicit solution)

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Solution or Explicit Solution

Definition: A function ϕ defined on an interval ${ }^{1} /$ and possessing at least n continuous derivatives on I is a solution of (${ }^{*}$) on l if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Example: We verified that $\phi(x)=c_{1} x+\frac{c_{2}}{x}$ is a solution to the ODE $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ for any choice of the constants c_{1} and c_{2} on the interval $I=(0, \infty)$ because

- it is twice differentiable, and
- when we substituted $y=c_{1} x+\frac{c_{2}}{x}$ into the equation, it resulted in a true statement.

[^0]Example:
Verify that $\phi(t)=\frac{1}{t}$ is a solution to the differential equation

$$
\frac{d y}{d t}=-y^{2}
$$

and explain why the interval of definition for this solution can be $(0,1)$, but it can't be $(-1,1)$.
$\phi(t)=\frac{1}{t}$ is differentiable for all

$$
t \neq 0, \quad \operatorname{set} y=\phi(t)
$$

$$
y=\frac{1}{t}
$$

Evaluate the left side.

$$
\frac{d y}{d t}=\frac{d}{d t}\left(\frac{1}{t}\right)=-t^{-2}=\frac{-1}{t^{2}}
$$

Evolucte the right side

$$
-y^{2}=-\left(\frac{1}{t}\right)^{2}=\frac{-1}{t^{2}}
$$

So $\frac{d y}{d t}=\frac{-1}{t^{2}}=-y^{2}$ for $y=\frac{1}{t}$
That is, $\phi(t)=\frac{1}{t}$ is a solution.
$(-1,1)$ cart be the domain as ϕ is not differentiable on this interval.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Implicit Solution

Definition: An implicit solution of (*) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

Recall that a relation is an equation in the two variables x and y. Something like

$$
x^{2}+y^{2}=4, \quad \text { or } \quad x y=e^{y}
$$

would be examples of relations.

Example: Implicitly Defined Solutions)
Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

we ll use implicit diff. to show that when the relation is true, the $O D E$ is true. from the relation, find $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{2}-2 x^{2} y\right)=\frac{d}{d x}(1) \\
& \quad 2 y \frac{d y}{d x}-2\left(2 x y+x^{2} \frac{d y}{d x}\right)=0
\end{aligned}
$$

It may not be possible to clearly identify the domain of definition of an implicit solution.

Isolate $\frac{d y}{d x}$:

$$
\begin{aligned}
& y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x}=0 \\
& \quad\left(y-x^{2}\right) \frac{d y}{d x}=2 x y \\
& \Rightarrow \frac{d y}{d x}=\frac{2 x y}{y-x^{2}} \quad \text { for } y-x^{2} \neq 0
\end{aligned}
$$

This demonstrates that $y^{2}-2 x^{2} y=1$ defines a solution to $\frac{d y}{d x}=\frac{2 x y}{y-x^{2}}$.

Function vs Solution

The interval of defintion has to be an interval.

Consider the ODE

$$
\frac{d y}{d x}=-y^{2}
$$

The function $y=\frac{1}{x}$ is a solution. The domain of $f(x)=\frac{1}{x}$

- as a function could be stated as $(-\infty, 0) \cup(0, \infty)$.
- as a solution to an ODE could be stated as $(0, \infty)$, or as $(-\infty, 0)$.

In the absence of additional information, we'll usually take the interval of definition to be the largest possible one (or one of the largest possible ones).

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.

Systems of ODEs

Sometimes we want to consider two or more dependent variables that are functions of the same independent variable. The ODEs for the dependent variables can depend on one another. Some examples of relevant situations are

- predator and prey
- competing species
- two or more masses attached to a system of springs
- two or more composite fluids in attached tank systems

Such systems can be linear or nonlinear.

Example of Nonlinear System

$$
\begin{aligned}
\frac{d x}{d t} & =-\alpha x+\beta x y \\
\frac{d y}{d t} & =\gamma y-\delta x y
\end{aligned}
$$

This is known as the Lotka-Volterra predator-prey model. $x(t)$ is the population (density) of predators, and $y(t)$ is the population of prey. The numbers α, β, γ and δ are nonnegative constants.
This model is built on the assumptions that

- in the absence of predation, prey increase exponentially
- in the absence of predation, predators decrease exponentially,
- predator-prey interactions increase the predator population and decrease the prey population.

Example of a Linear System

$$
\begin{aligned}
& \frac{d i_{2}}{d t}=-2 i_{2}-2 i_{3}+60 \\
& \frac{d i_{3}}{d t}=-2 i_{2}-5 i_{3}+60
\end{aligned}
$$

Figure: Electrical Network of resistors and inductors showing currents i_{2} and i_{3} modeled by this system of equations.

Solution of a System

When we talk about a solution to a system of ODEs, we mean a set of functions, one for each dependent variable. For example, a solution to

$$
\begin{aligned}
& \frac{d i_{2}}{d t}=-2 i_{2}-2 i_{3}+60 \\
& \frac{d i_{3}}{d t}=-2 i_{2}-5 i_{3}+60
\end{aligned}
$$

would have to include functions for both of i_{2} and i_{3}.
A fun exercise is to show that

$$
\begin{aligned}
& i_{2}(t)=30-24 e^{-t}-6 e^{-t} \\
& i_{3}(t)=12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

gives a solution. This is what you get if you assume that the initial currents are all zero.

Systems of ODEs

There are various approaches to solving a system of differential equations. These can include

- elimination (try to eliminate a dependent variable),
- matrix techniques,
- Laplace transforms ${ }^{2}$
- numerical approximation techniques

[^1]
Some Terms

- A parameter is an unspecified constant (such as c_{1} and c_{2} in the last example with $\left.\phi(x)=c_{1} x+\frac{c_{2}}{x}\right)$.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $\phi(x)=c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

[^1]: ${ }^{2}$ We'll consider this later.

