January 14 Math 3260 sec. 51 Spring 2022

Section 1.1: Systems of Linear Equations

Recall that a **linear system** of (algebraic) equations in *n* variables x_1, \ldots, x_n is one of the form

January 12, 2022 1/33

Theorem on Solutions

A linear system of equations has exactly one of the following:

- i No solution, or
- ii Exactly one solution, or
- iii Infinitely many solutions.

We said that a system is

- inconsistent if it has no solutions and
- **consistent** if it has at least one solution.

Linear Systems & Matrices

Given a linear system, we can identify two matrices corresponding to that system.

The coefficient matrix and the augmented matrix.

a ₁₁	a ₁₂	•••	a _{1n} -	a ₁₁	a ₁₂	• • •
a ₂₁	a 22	•••	a 2n	a ₁₁ a ₂₁	<i>a</i> ₂₂	•••
1	1	$\mathbb{P}_{\mathcal{A}}$	1	÷	÷	γ_{i_1}
<i>a</i> _{m1}	<i>a</i> _{m2}	• • •	a _{mn}	_ <i>a</i> _{m1}	<i>a</i> _{m2}	•••

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで January 12, 2022 3/33

 $\begin{array}{cccc} a_{1n} & b_1 \\ a_{2n} & b_2 \\ \vdots & \vdots \\ a_{mn} & b_m \end{array}$

Elementary Row Operations: On a Matrix

We have three operations we can perform on a matrix that are called **Elementary Row Operations**.

- i Interchange any two rows (row swap).
- ii Multiply a row by any nonzero constant (scaling).
- iii Replace a row with the sum of itself and a multiple of another row (**replacement**).

Definition: If any sequence of elementary row operations are performed on a matrix, the resulting matrix is called **row equivalent**.

to the original matrix

イロト 不得 トイヨト イヨト ヨー ろくの

Theorem on Row Equivalent Matrices

Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems have the same solution set. That is, the linear systems are equivalent.

Augmented Matrix

We saw the example

Through a sequence of operation (swapping equations, scaling equations, and replacing equations), we transformed this system into the **equivalent** system

$$\begin{array}{ccccccc} x_1 & & = & 1 & & & & & \begin{bmatrix} 1 & 0 & 0 & 1 \\ & x_2 & & = & 0 & & & \\ & x_3 & = & 5 & & & & \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

January 12, 2022 6/33

A key here is structure!

Consider the following augmented matrix. Determine if the associated system is consistent or inconsistent. If it is consistent, determine the solution set. $\overline{1}$

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
 $\begin{bmatrix} 1 \times_{1} + O \times_{2} + O \times_{3} = 3 \\ O \times_{1} + I \times_{2} + O \times_{3} = 1 \\ O \times_{1} + O \times_{2} + 1 \times_{3} = -2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \begin{array}{l} X_1 + Z X_2 + 0 X_3 = 3 \\ 0 X_1 + X_2 - X_3 = 4 \\ 0 X_1 + X_2 - X_3 = 4 \\ 0 X_1 + 0 X_2 = 5 \\ This says \quad 0 = 3 \\ which is always false. \end{array}$$

(b)

(c)
$$\begin{bmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\begin{array}{c} X_1 + 0X_2 - 2X_3 - -3 \\ 0X_1 + X_2 + X_3 & = 4 \\ 0X_1 + 0X_2 + 0X_3 & = 0 \\ \end{array}$
this last equation is $\begin{array}{c} 0 = 0 \\ \end{array}$
which is always true.
The 1st two equations on be rearranged as $\begin{array}{c} X_1 = -3 + 2X_3 \\ X_2 = 4 - X_3 \\ \end{array}$ with no and time on X_3
 $\begin{array}{c} X_1 = -3 + 2X_3 \\ X_2 = 4 - X_3 \\ \end{array}$

January 12, 2022 9/33