January 14 Math 3260 sec. 51 Spring 2022

Section 1.1: Systems of Linear Equations

Recall that a linear system of (algebraic) equations in n variables x_{1}, \ldots, x_{n} is one of the form

$$
\rightarrow \begin{array}{cccccc}
a_{11} x_{1} & +a_{12} x_{2}+\cdots & +a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1} & +a_{22} x_{2}+\cdots & +a_{2 n} x_{n} & = & b_{2} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots & +a_{m n} x_{n} & =b_{m} .
\end{array}
$$

Theorem on Solutions

A linear system of equations has exactly one of the following:
i No solution, or
ii Exactly one solution, or
iii Infinitely many solutions.

We said that a system is

- inconsistent if it has no solutions and
- consistent if it has at least one solution.

Linear Systems \& Matrices

Given a linear system, we can identify two matrices corresponding to that system.

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots \\
\vdots
\end{gathered}
$$

The coefficient matrix and the augmented matrix.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

Elementary Row Operations: On a Matrix

We have three operations we can perform on a matrix that are called Elementary Row Operations.
i Interchange any two rows (row swap).
ii Multiply a row by any nonzero constant (scaling).
iii Replace a row with the sum of itself and a multiple of another row (replacement).

Definition: If any sequence of elementary row operations are performed on a matrix, the resulting matrix is called row equivalent.
to the orisind matrix

Theorem on Row Equivalent Matrices

Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems have the same solution set. That is, the linear systems are equivalent.

Augmented Matrix

We saw the example

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{3}=-4 \\
2 x_{1} \\
x_{1}+x_{3}=7 \\
x_{2}+x_{3}=6
\end{gathered} \quad\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

Through a sequence of operation (swapping equations, scaling equations, and replacing equations), we transformed this system into the equivalent system

$$
\begin{aligned}
x_{1} & & =1 \\
x_{2} & & =0 \\
& x_{3} & =5
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

A key here is structure!
Consider the following augmented matrix. Determine if the associated system is consistent or inconsistent. If it is consistent, determine the solution set.
The system- is
(a) $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

$$
\begin{aligned}
& 1 x_{1}+o x_{2}+o x_{3}=3 \\
& o x_{1}+1 x_{2}+0 x_{3}=1 \\
& o x_{1}+\Delta x_{2}+1 x_{3}=-2
\end{aligned}
$$

L's consistent and the solution set is the one set of values
$(3,1,-2) \quad$ a.k.a. $\quad \begin{aligned} & x_{1}=3 \\ & x_{2}=1\end{aligned}$
$x_{2}=1$
$x_{3}=-2$
(b) $\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
x_{1}+2 x_{2}+\Delta x_{3} & =3 \\
O x_{1}+x_{2}-x_{3} & =4 \\
O x_{1}+\Delta x_{2}+O x_{3} & =3 \\
\text { This sags } O & =3
\end{aligned}
$$

which is always false.

The system is inconsistent.
(c) $\left[\begin{array}{cccc}1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& x_{1}+0 x_{2}-2 x_{3}=-3 \\
& O x_{1}+x_{2}+x_{3}=4 \\
& O x_{1}+O x_{2}+O x_{3}=0
\end{aligned}
$$

this last equation is

$$
0=0
$$

which is always tome.
The list two equations con be rearromged Δs

$$
\begin{aligned}
& x_{1}=-3+2 x_{3} \\
& x_{2}=4-x_{3}
\end{aligned} \quad \text { with no conditions on } x_{3}
$$

This has infinitely mans solutions of the form $x_{1}=-3+2 x_{3}$ and x_{3} is any real number $x_{2}=4-x_{3}$

