January 18 Math 2306 sec. 51 Spring 2023

Section 2: Initial Value Problems

An initial value problem (IVP) consists of an ODE

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

coupled with a set if initial conditions (IC)

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

Note two key features of the problem

- The number of ICs matches the order of the ODE, and
- all IC are given at the same specified input value x_{0}.

IVPs
First order case:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

- The ODE giver info on the shape of a solution
- The IC indicates that the solution must pass through the point $\left(x_{0}, y_{0}\right)$

IVPs
Second order case:

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

If y is the position of a partsche moving along a line
$y^{\prime \prime}$ gives the acceleration @ time X.
y. is the initial position and y, is the initial velocity.

System of IVPs

We can also consider a system of IVP for example

$$
\begin{array}{ll}
\frac{d i_{2}}{d t}=-2 i_{2}-2 i_{3}+60, & i_{2}\left(t_{0}\right)=i_{2_{0}} \\
\frac{d i_{3}}{d t}=-2 i_{2}-5 i_{3}+60, & i_{3}\left(t_{0}\right)=i_{30}
\end{array}
$$

The number of initial conditions for each dependent variable will match the highest order derivative for that dependent variable. All initial conditions for all dependent variables are given at the same input value $\left(t_{0}\right)$.

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

The solutions to the ORF are in the family $y=c_{1} x+\frac{c_{2}}{x}$. We hove to find the values of C_{1} and c_{2} so that the $I C$ ore satisfied.

$$
y=c_{1} x+\frac{c_{2}}{x}, \quad y^{\prime}=c_{1}-\frac{c_{2}}{x^{2}}
$$

Apply $y(1)=1 \quad y(1)=c_{1}(1)+\frac{c_{2}}{1}=1$

Apply $y^{\prime}(1)=3 \quad y^{\prime}(1)=c_{1}-\frac{c_{2}}{1^{2}}=3$
we need to solve

$$
\begin{aligned}
& c_{1}+c_{2}=1 \\
& c_{1}-c_{2}=3
\end{aligned}
$$

add $\quad 2 c_{1}=4 \quad \Rightarrow \quad c_{1}=2$
From the $1^{\text {st }}$ equ. $\quad c_{2}=1-c_{1}=1-2=-1$
The solution to the $V V P$ is

$$
y=2 x-\frac{1}{x}
$$

$y=c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter
family of solutions to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

$y=2 x-\frac{1}{x}$ is a particular
solution to the ODE and it is the solution to the IVP．

