January 19 Math 3260 sec. 51 Spring 2024

Section 1.3: Vector Equations

Definition: Vector

A matrix that consists of one column is called a column vector or simply a vector.

When we give a vector a name (i.e. use a variable to denote a vector), the convention

- in typesetting is to use bold face
\mathbf{u} and \mathbf{x}
- in handwriting is to place a little arrow over the variable
\vec{u} and \vec{x}

Set of Real Ordered Pairs: \mathbb{R}^{2}

The set of vectors of the form $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ with x_{1} and x_{2} any real numbers is denoted by

$$
\mathbb{R}^{2}
$$

(read "R two"). It's the set of all real ordered pairs.

Geometry

Each vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left(x_{1}, x_{2}\right)
$$

This is not to be confused with a row matrix.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \neq\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]
$$

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

$$
\left[\begin{array}{c}
-4 \\
1
\end{array}\right]=(-4,1), \quad\left[\begin{array}{l}
2 \\
5
\end{array}\right]=(2,5)
$$

Vector Equality

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar*.

Vector Equivalence: Equality of vectors is defined by

$$
\mathbf{u}=\mathbf{v} \quad \text { if and only if } u_{1}=v_{1} \quad \text { and } \quad u_{2}=v_{2}
$$

*A scalar is an element of the set from which u_{1} and u_{2} come. For our purposes, a scalar is a real number.

Algebraic Operations

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar.
Scalar Multiplication: The scalar multiple of \mathbf{u}

$$
c \mathbf{u}=\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right]
$$

Vector Addition: The sum of vectors \mathbf{u} and \mathbf{v}

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Examples

$$
\text { Let } \mathbf{u}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
7
\end{array}\right], \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]
$$

Evaluate
(a) $-2 \mathbf{u}=-2\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{r}-8 \\ 4\end{array}\right]$

Examples

Let $\mathbf{u}=\left[\begin{array}{c}4 \\ -2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}-1 \\ 7\end{array}\right], \quad$ and $\quad \mathbf{w}=\left[\begin{array}{c}-3 \\ \frac{3}{2}\end{array}\right]$
Evaluate
(b) $-2 \mathbf{u}+3 \mathbf{v}$

$$
=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-3 \\
21
\end{array}\right]=\left[\begin{array}{c}
-11 \\
25
\end{array}\right]
$$

$$
\begin{aligned}
-2 \vec{u} & =\left[\begin{array}{c}
-8 \\
4
\end{array}\right] \\
3 \vec{v} & =3\left[\begin{array}{c}
-1 \\
7
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2!
\end{array}\right]
\end{aligned}
$$

Examples

$$
\text { Let } \mathbf{u}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
7
\end{array}\right], \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]
$$

(c) Is it true that $\mathbf{w}=-\frac{3}{4} \mathbf{u}$?

$$
\frac{-3}{4} \vec{h}=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]=\vec{\omega} \text {. yes }
$$

