January 19 Math 3260 sec. 52 Spring 2022

Section 1.2: Row Reduction and Echelon Forms

Recall the examples of augmented matrices for which is was easy to determine whether the system was consistent or inconsistent and what solutions it might have.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 2 & 0 & 3 \\
0 & 1 & -1 & 4 \\
0 & 0 & 0 & 3
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Some key features we can look for are

- Columns having only one nonzero entry that is a 1 , and
- A row with all zeroes or all zeros except for the last entry which in nonzero.

Row Reduction and Echelon Forms

Definition:

A matrix is in echelon form (a.k.a. row echelon form) if the following properties hold
i Any row of all zeros are at the bottom.
cet
ii The first nonzero number (called the leading entry) in a row is to the right of the first nonzero number in all rows above it.
iii All entries below a leading entry are zeros.

$$
\begin{gathered}
\text { Is } \\
{\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -1 & 1 \\
0 & 0 & 7
\end{array}\right]}
\end{gathered}
$$

Is Not

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Reduced Echelon Form

Definition: A matrix is in reduced echelon form (a.k.a. reduced row echelon form) if it is in echelon form and the following additional properties hold
iv The leading entry of each row is 1 (called a leading 1), and
v each leading 1 is the only nonzero entry in its column.

$$
\begin{array}{cc}
\text { Is } \\
{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]} & \text { Is Not } \\
\end{array}
$$

Notation for Elementary Row Operations

The Elementary Row Operations are
i Interchange any two rows (row swap).

$$
\text { Swap rows } i \text { and } j: \quad R_{i} \leftrightarrow R_{j}
$$

ii Multiply a row by any nonzero constant (scaling).

$$
\text { Scale row } i \text { by } k: \quad k R_{i} \rightarrow R_{i}
$$

iii Replace a row with the sum of itself and a multiple of another row (replacement).

Replace row j with the sum of itself and k times row i :

$$
k R_{i}+R_{j} \rightarrow R_{j}
$$

Example (finding ref's and ref's)
Find an echelon form for the following matrix using elementary row operations.
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2\end{array}\right]$

- Loot nonzero entrm in rows 1 column. 1.
- Want de zero below that leading entry.

$$
\begin{gathered}
D_{0} \quad-2 R_{1}+R_{2} \rightarrow R_{2} \\
{\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 3 & 2
\end{array}\right]}
\end{gathered}
$$

scratch

$$
\begin{array}{rrr}
-4 & -2 & -6 \\
4 & 3 & 6
\end{array}
$$

- Now we wart a nonzero ends y in row 2 Column 2.
- We want zeros blocs it.

$$
\begin{aligned}
\text { Do } & -3 R_{2}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] }
\end{aligned}
$$

This is an ref.

Example (ref)
Find the reduced echelon form for the following matrix.
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 3 & 6\end{array}\right]$ we con start with the ref we just found.

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

- Need each lessing entry to be 1
- Need each leading 1 to be the only nonzero entry in its colum?.

Scale $R_{3}, \frac{1}{2} R_{3} \rightarrow R_{3}$

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { To clear out the third } \\
\text { column do } \\
-3 R_{3}+R_{1} \rightarrow R_{1}
\end{array}} \\
{\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { clear out column } 2 \\
-R_{2}+R_{1} \rightarrow R_{1}
\end{array}} \\
{\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { Finally, } \begin{array}{l}
\frac{1}{2} R_{1} \rightarrow R_{1}
\end{array}} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { This is } \\
\text { an ref. }
\end{array}}
\end{gathered}
$$

Theorem

Theorem: Each matrix is row equivalent to exactly one reduced row echelon matrix.

This says that the rref of a matrix is unique, and it allows the following unambiguous definition:

Definition: A pivot position in a matrix A is a location that corresponds to a leading 1 in the reduced echelon form of A. A pivot column of a matrix A is a column of A that contains a pivot position.

