January 21 Math 3260 sec. 52 Spring 2022

We defined the row echelon form and reduced row echelon forms of matrices.
Definition: A matrix is in row echelon form (ref) if the following properties hold
i Any row of all zeros are at the bottom.
ii The first nonzero number (called the leading entry) in a row is to the right of the first nonzero number in all rows above it.
iii All entries below a leading entry are zeros.

And a matrix is in reduced row echelon form (rref) if it is in echelon form and the following additional properties hold
iv The leading entry of each row is 1 (called a leading 1), and
v each leading 1 is the only nonzero entry in its column.

Example (finding ref's and rref's)

$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2\end{array}\right]$

Using elementary row operations, an ref for this matrix is

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \cdot \quad \frac{1}{2} R_{3} \rightarrow R_{3}\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The rref for this matrix is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Theorem

Theorem: Each matrix is row equivalent to exactly one reduced row echelon matrix.

This says that the rref of a matrix is unique, and it allows the following unambiguous definition:

Definition: A pivot position in a matrix A is a location that corresponds to a leading 1 in the reduced echelon form of A. A pivot column of a matrix A is a column of A that contains a pivot position.

Identify the pivot position and columns given...

A

$$
\left[\begin{array}{ccccc}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 & 0 & -3 & 0 & 5 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

O these are the pivot positions
The pivot columns are columns 1,2 , and 4 .

Complete Row Reduction isn't needed to find Pivots

 Find the pivot positions and pivot columns of the matrix$$
\left[\begin{array}{ccc}
\text { (1) } & 1 & 4 \\
-2 & 1 & -2 \\
1 & 0
\end{array}\right] \quad \begin{aligned}
& 0 \text { - pinot positions } \\
& \text { The pivot columns are } 1 \text { and } Z .
\end{aligned}
$$

This matrix has an ref and ref

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 3 & 6 \\
0 & 0 & 0
\end{array}\right] \quad \text { and }\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right], \quad \text { respectively. }
$$

Row Reduction Algorithm

To obtain an echelon form, we work from left to right beginning with the top row working downward.

$$
\left[\begin{array}{ccccc}
0 & 3 & -6 & 4 & 6 \\
3 & -7 & 8 & 8 & -5 \\
3 & -9 & 12 & 6 & -9
\end{array}\right]
$$

Step 1: Unless the left most column is all zeros, the left most column is a pivot column. The top position is a pivot position.
Step 2: Get a nonzero entry in the top left position by row swapping if needed.

$$
\text { Let's } \lambda_{0} R_{1} \longleftrightarrow R_{3}
$$

$$
\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
3 & -7 & 8 & 8 & -5 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]
$$

Row Reduction Algorithm

$$
\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
3 & -7 & 8 & 8 & -5 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]
$$

Step 3: Use row operations to get zeros in all entries below the pivot.

$$
\begin{aligned}
& -R_{1}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 2 & -4 & 2 & 4 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]}
\end{aligned}
$$

Row Reduction Algorithm

$$
\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 2 & -4 & 2 & 4 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]
$$

Step 4: Ignore the row with a pivot, all rows above it, the pivot column, and all columns to its left, and repeat steps 1-3 for each pivot position.

$$
\begin{aligned}
& \text { LeA's do } \begin{array}{l}
\frac{1}{2} R_{2} \rightarrow R_{2} \\
{\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 1 & -2 & 1 & 2 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]} \\
\\
-3 R_{2}+R_{3} \rightarrow R_{3}
\end{array}, l
\end{aligned}
$$

Row Reduction Algorithm

$$
\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 1 & -2 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

This is

$$
\begin{array}{ll}
\text { his } \\
\text { or ref }
\end{array}
$$

Row Reduction Algorithm
To obtain a reduced row echelon form: Starting with the right most pivot and working up and to the left, use row operations to get a zero in each position above a pivot. Scale to make each pivot a 1.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 1 & -2 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \begin{array}{c}
\text { Clear out the } 6 \text { ane } 1 \\
\text { in column } 4 \text { above the } \\
\text { pinot }
\end{array}} \\
& -R_{3}+R_{2} \rightarrow R_{2} \text { and }-6 R_{3}+R_{1} \rightarrow R_{1} \\
& {\left[\begin{array}{ccccc}
3 & -9 & 12 & 0 & -9 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$ in column 4 above the last

Row Reduction Algorithm
Clear out the -9 about the pivot position row 2 column 2 .

$$
\begin{aligned}
& 9 R_{2}+R_{1} \rightarrow R_{1} \\
& {\left[\begin{array}{ccccc}
3 & 0 & -6 & 0 & 9 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{array}{ccccc}
0 & 9 & -18 & 0 & 18 \\
3 & -9 & 12 & 0 & -9
\end{array}
$$

Scale row $1 \quad \frac{1}{3} R_{1} \rightarrow R_{1}$

$$
\left[\begin{array}{ccccc}
1 & 0 & -2 & 0 & 3 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \begin{gathered}
\text { This }^{s} \text { then }^{2} \\
\text { is } \\
\text { s ed }
\end{gathered}
$$

Echelon Form \& Solving a System
Remark: The row operations used to get an ref correspond to an equivalent system!
Consider the reduced echelon matrix, and describe the solution set for the associated system of equations (the one who'd have this as its augmented matrix).

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -2 & 4 \\
0 & 0 & 0 & 1 & 0 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}+x_{2} & =3 \\
x_{3}-2 x_{5} & =4 \\
x_{4} & =-9 \\
0 & =0
\end{aligned}
$$

The solutions are siumby

$$
\begin{aligned}
& x_{1}=3-x_{2} \\
& x_{3}=4+2 x_{5} \\
& x_{4}=-9
\end{aligned}
$$

$X_{2}+X_{5}$ can be any real numbers

Basic \& Free Variables

Suppose a system has m equations and n variables, $x_{1}, x_{2}, \ldots, x_{n}$. The first n columns of the augmented matrix correspond to the n variables.

- If the $i^{t h}$ column is a pivot column, then x_{i} is called a basic variable.
- If the $i^{\text {th }}$ column is NOT a pivot column, then x_{i} is called a free variable.
$\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -2 & 4 \\ 0 & 0 & 0 & 1 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The system would have 4 equations in 5 variables. The basic variables are $x_{1} x_{3}$ and x_{4}. The free variables are x_{2} and x_{5}.

