January 22 Math 3260 sec. 52 Spring 2024

Section 1.3: Vector Equations

We defined vectors, specifically vectors in \mathbb{R}^{2}, and some basic arithmetic.
For vectors $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ in \mathbb{R}^{2} and scalar c :
$\mathbf{u}=\mathbf{v}$ if and only if $u_{1}=v_{1}$ and $u_{2}=v_{2}$.

$$
\begin{aligned}
\mathbf{c} \mathbf{u} & =\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right] . \\
\mathbf{u}+\mathbf{v} & =\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
\end{aligned}
$$

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by angle of 0 (if $c>0$) or π (if $c<0$). We'll see that $0 \mathbf{u}=(0,0)$ for any vector \mathbf{u}.

Figure: Scaled vectors are parallel. For nonzero vector v, cv is stretched or compressed by a factor $|c|$ and flips 180° if c is negative.

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u}+\mathbf{v}$ of two nonparallel vectors (each different from $(0,0)$) is the the fourth vertex of a parallelogram whose other three vertices are $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$, and (0,0).

Figure: If \mathbf{u} and \mathbf{v} are nonzero and not parallel, they determine a paralelogram. The sum $\mathbf{u}+\mathbf{v}$ is a diagonal. (Note, the difference $\mathbf{u}-\mathbf{v}$ is the other diagonal.)

Vectors in \mathbb{R}^{3} (R three)

A vector in \mathbb{R}^{3} is a 3×1 column matrix. For example

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right], \quad \text { or } \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Similar to vectors in \mathbb{R}^{2}, vectors in \mathbb{R}^{3} are ordered triples.

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]=(1,3,-1) .
$$

Vectors in $\mathbb{R}^{n}(\mathbb{R} n)$

A vector in \mathbb{R}^{n} for $n \geq 2$ is a $n \times 1$ column matrix. These are ordered n-tuples. For example

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by 0 or $\overrightarrow{0}$ and is not to be confused with the scalar 0 .

Equivalence \& Operations

Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ be in \mathbb{R}^{n} and c is a scalar.
Equivalence: $\mathbf{u}=\mathbf{v} \Leftrightarrow u_{i}=v_{i}$ for each $i=1, \ldots, n$
Scalar Multiplication: $\quad c \mathbf{u}=\left[\begin{array}{c}c u_{1} \\ \vdots \\ c u_{n}\end{array}\right]$
Vector Addition: $\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}u_{1}+v_{1} \\ \vdots \\ u_{n}+v_{n}\end{array}\right]$

Algebraic Properties on \mathbb{R}^{n}

Algebraic Properties on \mathbb{R}^{n}

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \quad$ (vi) $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) ${ }^{a} \quad \mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
(viii) $1 \mathbf{u}=\mathbf{u}$
${ }^{a}$ The term $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Linear Combination

Definition

A linear combination of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ in \mathbb{R}^{n} is a vector \mathbf{y} of the form

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{1}, \ldots, c_{p} are often called weights.

For example, suppose we have two vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Some linear combinations include

$$
3 \mathbf{v}_{1}, \quad-2 \mathbf{v}_{1}+4 \mathbf{v}_{2}, \quad \frac{1}{3} \mathbf{v}_{2}+\sqrt{2} \mathbf{v}_{1}, \quad \text { and } \quad \mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}
$$

Example
Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-2 \\ -2 \\ -3\end{array}\right]$. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.
we con restate the question as:
Do the ne exist scolders c_{1} and c_{2} such that $\vec{b}=c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2} ?$ set us an equation

$$
\begin{aligned}
& c_{1} {\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-3
\end{array}\right] } \\
& {\left[\begin{array}{c}
c_{1} \\
-2 c_{1} \\
-c_{1}
\end{array}\right]+\left[\begin{array}{c}
3 c_{2} \\
0 \\
2 c_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-3
\end{array}\right] }
\end{aligned}
$$

$$
\left[\begin{array}{l}
c_{1}+3 c_{2} \\
-2 l_{1} \\
-c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right]
$$

$c_{1}+3 c_{2}=-2$ This is a line ar

$$
-2 c_{1}=-2
$$ system of equations.

$$
-c_{1}+2 c_{2}=-3
$$

We can use an aus merited matrix to determine if this is consistent.

The augmented metro is

$$
\left[\begin{array}{ccc}
1 & 3 & -2 \\
-2 & 0 & -2 \\
-1 & 2 & -3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

The system is consistent simmer the right column is not a pinot
column.
Hence \hat{b} is a linear combination of \vec{a}_{1} and $\vec{a}_{a_{2}}$. More over,

$$
\vec{b}=\vec{a}_{1}-\vec{a}_{2}
$$

Some Convenient Notation

Letting $\mathbf{a}_{1}=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right]$, and in general $\mathbf{a}_{j}=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$, for
$j=1, \ldots, n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Note that each vector \mathbf{a}_{j} is a vector in \mathbb{R}^{m}.

Vector and Matrix Equations

Vector \& Matrix Equations

The vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

In particular, \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Span

Definition

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}(S)
$$

It is called the subset of \mathbb{R}^{n} spanned by (a.k.a. generated by) the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Remark: To say that a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ means that there exists a set of scalars c_{1}, \ldots, c_{p} such that

$$
\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Equivalent Statements

Suppose $\mathbf{b}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{m}. The following are equivalent:

- \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$,
$-\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$ for some scalars c_{1}, \ldots, c_{p},
- the vector equation $x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}$ has a solution,
- the linear system of equations whose augmented matrix is $\left[\mathbf{v}_{1} \cdots \mathbf{v}_{p} \mathbf{b}\right]$ is consistent.

Examples
Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{a}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right]$.
(a) Determine if $\mathbf{b}=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.
we can determine this by determining whether the system w/ angmantes matrix $\left[\vec{a}, \vec{a}_{2} \vec{b}\right]$ is consistent

Since the right most column is a pivot column, the system is in consistent.

Hence \vec{b} is not in $\operatorname{spon}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$.
(b) For what values of k, if any, is $\mathbf{b}=\left[\begin{array}{r}5 \\ -5 \\ k\end{array}\right]$ in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$?

Again, we can use an augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\vec{a}, & \vec{a}_{2} & \vec{b}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 5 \\
1 & 4 & -5 \\
2 & -2 & k
\end{array}\right] \begin{array}{l}
-R_{1}+R_{2} \rightarrow R_{2} \\
-2 R_{1}+R_{3} \rightarrow R_{3}
\end{array}} \\
& {\left[\begin{array}{ccc}
1 & -1 & 5 \\
0 & 5 & -10 \\
0 & 0 & k-10
\end{array}\right] \quad \begin{array}{l}
\text { The last column is } \\
\text { not a pivot column } \\
\text { if } k-10=0
\end{array}}
\end{aligned}
$$

The system is on', consistent if $k=10$.

$$
\begin{gathered}
\text { So } \vec{b} \text { is in } \operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\} \text { on } l_{7} \text { if } \\
k=10 .
\end{gathered}
$$

Another Example
Give a geometric description of the subset of \mathbb{R}^{2} given by $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. If \vec{x} is in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. then $\vec{x}=x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$. These an all points $\left(x_{1}, 0\right)$.

Lt's the x-axis.

$\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}

If \mathbf{u} is any nonzero vector in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}\}$ is a line through the origin parallel to \mathbf{u}.

Figure: A nonzero vector \mathbf{u} and the line $\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}.

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^{3}

If \mathbf{u} and \mathbf{v} are nonzero, and nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

$\mathbf{w}=\mathrm{au}+\mathrm{b} \mathbf{v}$

Figure: A vector $\mathbf{w}=a \mathbf{u}+b \mathbf{v}$. If we let a and b vary, the collection of vectors $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane.

Example

Let $\mathbf{u}=(1,1)$ and $\mathbf{v}=(0,2)$ in \mathbb{R}^{2}. Show that for every pair of real numbers a and b, that (a, b) is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
we need to show that $x_{1} \vec{u}+x_{c} \vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]=\vec{b}$
is always consistent. Using on augmented matrix

$$
\left[\begin{array}{lll}
\vec{u} & \vec{v} & \vec{b}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & a \\
1 & 2 & b
\end{array}\right] \xrightarrow{\operatorname{rrsf}}\left[\begin{array}{llc}
1 & 0 & a \\
0 & 1 & \frac{b-a}{2}
\end{array}\right]
$$

The third column wont be a pivot column for $a n y$ choice of (a, b). Hence the system is always consistent.

That is, (a, b) is in $\operatorname{Span}\{\vec{u}, \vec{v}\}$ for de a and b.

In fact, $\operatorname{Span}\{\vec{u}, \vec{v}\}$ is \mathbb{R}^{2}.

