January 23 Math 2306 sec. 51 Spring 2023

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x) .
$$

For example, solve the ODE

$$
\begin{aligned}
& \frac{d y}{d x}=4 e^{2 x}+1 . \quad y=\int \frac{d y}{d x} d x \\
&=\int\left(4 e^{2 x}+1\right) d x \\
& y=2 e^{2 x}+x+C \\
& \text { a } 1 \text {-parameter family of solutions }
\end{aligned}
$$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y$

It is separable
w) $g(x)=x^{3}, \quad h(b)=y$
(b) $\frac{d y}{d x}=2 x+y$ Not separable
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right)$
not separatolue
(d)

$$
\begin{array}{r}
\frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t-y}=t e^{t} e^{-y} \\
g(t)=t e^{t}, h(y)=e^{-y}
\end{array}
$$

it is separable

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\int \frac{d y}{d x} d x=\int g(x) d x
$$

Recall that if y is a differentiable function of x, then the differential $d y=\frac{d y}{d x} d x$. We have

$$
\int d y=\int g(x) d x \quad \Longrightarrow \quad y=G(x)+C
$$

where G is an antiderivative of g.

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \quad \text { Divide by } h(y) \\
& \frac{1}{h(y)} \frac{d y}{d x}=g(x) \quad \text { multiply by } d x \\
& p(y) \frac{d y}{d x} d x=g(x) d x \\
& p(y) d y=g(x) d x \quad \text { nog sty }
\end{aligned}
$$

$$
\int p(y) d y=\int \delta(x) d x
$$

$$
P(y)=G(x)+C
$$

P is an ontiderivatiue of p and G is on anti derivative of g.
we have a 1-parameter family of solutions defined implicitly.

An IVP ${ }^{1}$ Find an explicit solution.

$$
\frac{d Q}{d t}=-2(Q-70), \quad Q(0)=180
$$

This is separable, $g(t)=-2$, and $h(Q)=Q-70$ Divide by $h(0)$

$$
\begin{array}{lc}
\frac{1}{Q-70} \frac{d Q}{d t}=-2 \Rightarrow \frac{1}{Q-70} \underbrace{\frac{d Q}{d t} d t}_{\underbrace{}_{Q}}=-2 d t \\
\int \frac{1}{Q-70} d Q=\int-2 d t \\
\ln |Q-70|=-2 t+C \quad
\end{array}
$$

Let's silu for Q

$$
e^{\ln |0.70|}=e^{-2 t+c} \Rightarrow \mid Q-701 \cdot e^{-2 t} \cdot e^{c}
$$

Let $k=e^{c}$

$$
|Q-70|=k e^{-2 t}
$$

or let $k= \pm e^{c}$

$$
\begin{aligned}
& = \pm e^{-} \\
& 0-70=k e^{-2 t}
\end{aligned}
$$

$$
\begin{aligned}
& Q-70=k e \\
\Rightarrow & Q=k e^{-2 t}+70
\end{aligned} \leftarrow \text { explicitions }
$$

Appl, $Q(0)=180 \quad 180=k e^{0}+70 \Rightarrow k=110$
The solution to the IVP is

$$
Q(t)=110 e^{-2 t}+70
$$

Solve the IVP

$$
\begin{aligned}
& \frac{d y}{d x}=4 x \sqrt{y}, \quad y(0)=0 \\
& 2 y^{1 / 2}=2 x^{2}+C \\
& \frac{1}{\sqrt{y}} \frac{d y}{d x}=4 x \Rightarrow y^{-1 / 2} \frac{d y}{d x} d x=4 x d x \\
& \int y^{-1 / 2} d y=\int 4 x d x \\
& 2 y^{1 / 2}=2 x^{2}+C \\
& \text { Apply } y(0)=0 \quad 2 \sqrt{0}=2(0)^{2}+C
\end{aligned}
$$

The solution to the IVP is given implicity by

$$
2 y^{1 / 2}=2 x^{2}
$$

Solving for y explicitly

$$
\begin{aligned}
\left(y^{1 / 2}\right)^{2} & =\left(x^{2}\right)^{2} \\
y & =x^{4}
\end{aligned}
$$

This is om explicit solution to the IV P.

Missed Solution

We made an assumption about being able to divide by $h(y)$ when solving $\frac{d y}{d x}=g(x) h(y)$. This may cause us to not find valid solutions.

The IVP $\frac{d y}{d x}=4 x \sqrt{y}, \quad y(0)=0$ has two distinct solutions

$$
y=x^{4}, \quad \text { and } \quad y(x)=0
$$

The second solution CANNOT be found by separation of variables. Why?

Missed Solutions $\frac{d y}{d x}=g(x) h(y)$.

Theorem: If the number c is a zero of the function h, i.e. $h(c)=0$, then the constant function $y(x)=c$ is a solution to the differential equation $\frac{d y}{d x}=g(x) h(y)$.

Remark: Such a constant solution may or may not be recovered by separation of variables. We can always look for such solutions in addition to separation of variables.

