January 23 Math 2306 sec. 52 Spring 2023

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$\frac{dy}{dx} = g(x).$$

For example, solve the ODE

January 20, 2023 1/16

Separable Equations

Definition: The first order equation y' = f(x, y) is said to be **separable** if the right side has the form

$$f(x,y)=g(x)h(y).$$

That is, a separable equation is one that has the form

$$\frac{dy}{dx}=g(x)h(y).$$

January 20, 2023 2/16

Determine which (if any) of the following are separable.

(a)
$$\frac{dy}{dx} = x^3 y$$
 [t is separable
 $g(x) = x^3$, $h(y) = y$

(b)
$$\frac{dy}{dx} = 2x + y$$
 it isn't separable

<□><部><部><2><2><3</p>
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)
↓ (1)

(c)
$$\frac{dy}{dx} = \sin(xy^2)$$

This is not
separable

(d)
$$\frac{dy}{dt} - te^{t-y} = 0$$

 $\frac{dy}{dt} = t e^{t-y} = te^{t-y}$
 $g(t) = te^{t}$, $h(y) = e^{-y}$

Solving Separable Equations

Recall that from $\frac{dy}{dx} = g(x)$, we can integrate both sides

$$\int \frac{dy}{dx}\,dx = \int g(x)\,dx.$$

Recall that if y is a differentiable function of x, then the differential $dy = \frac{dy}{dx} dx$. We have

$$\int dy = \int g(x) \, dx \quad \Longrightarrow \quad y = G(x) + C$$

where G is an antiderivative of g.

We'll use this observation!

January 20, 2023

Solving Separable Equations

Let's assume that it's safe to divide by h(y) and let's set p(y) = 1/h(y). We solve (usually find an implicit solution) by **separating the** variables.

$$\frac{dy}{dx} = g(x)h(y)$$
Tivide by $h(y)$

$$\frac{1}{h(y)} \frac{dy}{dx} = g(x) \quad \text{mult. by } dx$$

$$P(y) \frac{dy}{dx} = g(x) \quad dx$$

$$P(y) \frac{dy}{dy} = g(x) \quad dx$$

$$P(y) \frac{dy}{dy} = g(x) \quad dx$$

Integrate both sides

$$\int p(y) dy = \int g(x) dx$$

 $P(y) = G(x) + C$
where $P'(y) = p(y)$, $G'(x) = g(x)$
we get a 1-parameter family of
solutions · given implicitly.

◆□ ▶ ◆● ▶ ◆ ● ▶ ◆ ● ▶ ● ● 今 ○ ○ January 20, 2023 7/16

An IVP¹ Find an explicit solution.

$$\frac{dQ}{dt} = -2(Q-70), \quad Q(0) = 180$$
The OPE is separable w) $g(t) = -2, \quad h(Q) = Q-70$

$$\frac{1}{Q-70} \quad \frac{dQ}{dt} = -2 \implies \frac{1}{Q-70} \quad \frac{dQ}{dt} \quad 4t = -2dt$$

$$\frac{1}{Q-70} \quad dQ = -2dt \implies \int \frac{1}{Q-70} \quad dQ = \int -2dt$$

$$\int \frac{1}{Q-70} \quad dQ = -2t + C$$

$$\int e^{-70} \quad dQ = -2t + C$$

¹Recall IVP stands for *initial value problem*.

lati sola for \bigcirc en 1 Q-701 1Q-701 = e^{-2t}. e - - z++C = P. k= e or k= - e A. $Q - 70 = ke^{-2t} \Rightarrow Q = 70 + ke^{-2t}$ Apply (0(0) = 180 => k=180-70=110 $180 = 70 + ke^{2}$ The solution to the IVP is Q = 70 + 110 e-zt January 20, 2023 9/16

Solve the IVP

$$\frac{dy}{dx} = 4x\sqrt{y}, \quad y(0) = 0$$
This is separable of $g(x) = 4x$, $h(y) = 5y$.

$$\frac{1}{\sqrt{y}} = \frac{dy}{dx} = 4x \quad \Rightarrow \quad \frac{1}{\sqrt{y}} = \frac{dy}{dx} \quad dx = 4y \quad dy$$

$$\int \frac{-1}{\sqrt{y}} dy = \int 4x \quad dx$$

$$\frac{2}{\sqrt{y'}} = 2x^{2} + (--) \Rightarrow \quad 25y = 2x^{2} + (-)$$

$$A = \frac{1}{\sqrt{y}} = 2x^{2} + (-) \Rightarrow \quad 25y = 2x^{2} + (-)$$

$$A = \frac{1}{\sqrt{y}} = 2x^{2} + (-) \Rightarrow \quad 25y = 2x^{2} +$$

The solution to the INP is given
implicitly by

$$alsy = 2x^2$$

we can solve for y.
 $(15)^2 = (x^2)^2$
 $y = x^4$
This is an explicit solution to the
INP

January 20, 2023 11/16

୬ବଙ

Missed Solution

We made an assumption about being able to divide by h(y) when solving $\frac{dy}{dx} = g(x)h(y)$. This may cause us to not find valid solutions.

The IVP
$$\frac{dy}{dx} = 4x\sqrt{y}$$
, $y(0) = 0$ has two distinct solutions $y = x^4$, and $y(x) = 0$.

The second solution **CANNOT** be found by separation of variables. Why? We divided by Jy, $\frac{1}{15}$ isn't defined if g=0.

January 20, 2023

Missed Solutions $\frac{dy}{dx} = g(x)h(y)$.

Theorem: If the number *c* is a zero of the function *h*, i.e. h(c) = 0, then the constant function y(x) = c is a solution to the differential equation $\frac{dy}{dx} = g(x)h(y)$.

Remark: Such a constant solution may or may not be recovered by separation of variables. We can always look for such solutions in addition to separation of variables.

January 20, 2023