
January 24 Math 3260 sec. 52 Spring 2022

Section 1.2: Row Reduction and Echelon Forms

I We defined row echelon forms (ref) and reduced row echelon
forms (rref).

I We defined pivot positions and pivot columns.
I And, we’ve seen the row reduction algorithm.
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Basic & Free Variables
Suppose a system has m equations and n variables, x1, x2, . . . , xn. The
first n columns of the augmented matrix correspond to the n variables.

I If the i th column is a pivot column, then xi is called a basic
variable.

I If the i th column is NOT a pivot column, then xi is called a free
variable.


1 1 0 0 0 3
0 0 1 0 −2 4
0 0 0 1 0 −9
0 0 0 0 0 0


The system would have 4 equations in 5 variables. The basic variables
are x1 x3 and x4. The free variables are x2 and x5.
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Basic & Free Variables
When expressing the solution set of a consistent system with infinitely
many solutions, we will always express basic variables in terms of free
variables, and never vice versa.


1 1 0 0 0 3
0 0 1 0 −2 4
0 0 0 1 0 −9
0 0 0 0 0 0


The solution to this system will be expressed as

x1 = 3− x2

x3 = 4 + 2x5

x4 = −9
x2, x5 are free
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Consistent versus Inconsistent Systems

Consider each rref and the corresponding system. Note whether the
system is consistent. 1 0 2 3

0 1 1 0
0 0 0 1

 x1 + 0x2 + 2x3 = 3
0x1 + 1x2 + 1x3 = 0
0x1 + 0x2 + 0x3 = 1 1 0 0 0

0 1 0 4
0 0 1 −3

 , x1 + 0x2 + 0x3 = 0
0x1 + 1x2 + 0x3 = 4
0x1 + 0x2 + 1x3 = −3 1 2 0 0

0 0 1 4
0 0 0 0

 , x1 + 2x2 + 0x3 = 0
0x1 + 0x2 + x3 = 4
0x1 + 0x2 + 0x3 = 0

January 22, 2022 4 / 37



An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most
column of the augmented matrix is NOT a pivot column. That is, if and
only if each echelon form DOES NOT have a row of the form

[0 0 · · · 0 b], for some nonzero b.

If a linear system is consistent, then it has

(i) exactly one solution if there are no free variables, or
(ii) infinitely many solutions if there is at least one free variable.
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Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a column
vector or simply a vector.

When we give a vector a name (i.e. use a variable to denote a vector),
the convention

I in typesetting is to use bold face

u and x

I in handwriting is to place a little arrow over the variable

~u and ~x
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R2

The set of vectors of the form [
x1
x2

]
with x1 and x2 any real numbers is denoted by

R2

(read ”R two”). It’s the set of all real ordered pairs.
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Geometry

Each vector
[

x1
x2

]
corresponds to a point in the Cartesian plane. We

can equate them with ordered pairs written in the traditional format[
x1
x2

]
= (x1, x2).

This is not to be confused with a row matrix.[
x1
x2

]
6= [x1 x2]

We can identify vectors with points or with directed line segments
emanating from the origin (little arrows).
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Geometry

Figure: Vectors characterized as points, and vectors characterized as
directed line segments.

[
−4
1

]
= (−4,1),

[
2
5

]
= (2,5)
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Vector Equality

Let u =

[
u1
u2

]
, v =

[
v1
v2

]
, and c be a scalar∗.

Vector Equivalence: Equality of vectors is defined by

u = v if and only if u1 = v1 and u2 = v2.

*A scalar is an element of the set from which u1 and u2 come. For our
purposes, a scalar is a real number.
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Algebraic Operations

Let u =

[
u1
u2

]
, v =

[
v1
v2

]
, and c be a scalar.

Scalar Multiplication: The scalar multiple of u

cu =

[
cu1
cu2

]
.

Vector Addition: The sum of vectors u and v

u + v =

[
u1 + v1
u2 + v2

]
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Examples

Let u =

[
4
−2

]
, v =

[
−1
7

]
, and w =

[
−3

3
2

]
Evaluate

(a) −2u
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Examples

Let u =

[
4
−2

]
, v =

[
−1
7

]
, and w =

[
−3

3
2

]
Evaluate

(b) −2u+3v
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Examples

Let u =

[
4
−2

]
, v =

[
−1
7

]
, and w =

[
−3

3
2

]

(c) Is it true that w = −3
4u?
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Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only
change direction by an angle of 0 (if c > 0) or π (if c < 0). We’ll see
that 0u = (0,0) for any vector u.
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Geometry of Algebra with Vectors

Vector Addition: The sum u + v of two vectors (each different from
(0,0)) is the the fourth vertex of a parallelogram whose other three
vertices are (u1,u2), (v1, v2), and (0,0).
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Geometry of Algebra with Vectors

Figure: Left: 1
2 (−4,1) = (−2,1/2). Right: (−4,1) + (2,5) = (−2,6)

January 22, 2022 17 / 37


