January 24 Math 3260 sec. 52 Spring 2022

Section 1.2: Row Reduction and Echelon Forms

- We defined row echelon forms (ref) and reduced row echelon forms (rref).
- We defined pivot positions and pivot columns.
- And, we've seen the row reduction algorithm.

Basic \& Free Variables

Suppose a system has m equations and n variables, $x_{1}, x_{2}, \ldots, x_{n}$. The first n columns of the augmented matrix correspond to the n variables.

- If the $i^{t h}$ column is a pivot column, then x_{i} is called a basic variable.
- If the $i^{\text {th }}$ column is NOT a pivot column, then x_{i} is called a free variable.
$\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -2 & 4 \\ 0 & 0 & 0 & 1 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The system would have 4 equations in 5 variables. The basic variables are $x_{1} x_{3}$ and x_{4}. The free variables are x_{2} and x_{5}.

Basic \& Free Variables

When expressing the solution set of a consistent system with infinitely many solutions, we will always express basic variables in terms of free variables, and never vice versa.

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -2 & 4 \\
0 & 0 & 0 & 1 & 0 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The solution to this system will be expressed as

$$
\begin{aligned}
x_{1}= & 3-x_{2} \\
x_{3} & =4+2 x_{5} \\
x_{4}= & -9 \\
x_{2}, x_{5} & \text { are free }
\end{aligned}
$$

Consistent versus Inconsistent Systems

Consider each rref and the corresponding system. Note whether the system is consistent.

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], } & \begin{aligned}
x_{1}+0 x_{2}+2 x_{3} & =3 \\
0 x_{1}+1 x_{2}+1 x_{3} & =0 \\
0 x_{1}+0 x_{2}+0 x_{3} & =1
\end{aligned} \\
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -3
\end{array}\right], } & \begin{aligned}
x_{1}+0 x_{2}+0 x_{3} & =0 \\
0 x_{1}+1 x_{2}+0 x_{3} & =4 \\
0 x_{1}+0 x_{2}+1 x_{3} & =-3
\end{aligned} \\
{\left[\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right], } & \begin{aligned}
x_{1}+2 x_{2}+0 x_{3} & =0 \\
0 x_{1}+0 x_{2}+x_{3} & =4 \\
0 x_{1}+0 x_{2}+0 x_{3} & =0
\end{aligned}
\end{aligned}
$$

An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most column of the augmented matrix is NOT a pivot column. That is, if and only if each echelon form DOES NOT have a row of the form
$\left[\begin{array}{llll}0 & 0 & \cdots & 0\end{array}\right]$, for some nonzero b.

If a linear system is consistent, then it has
(i) exactly one solution if there are no free variables, or
(ii) infinitely many solutions if there is at least one free variable.

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a column vector or simply a vector.

When we give a vector a name (i.e. use a variable to denote a vector), the convention

- in typesetting is to use bold face
\mathbf{u} and \mathbf{x}
- in handwriting is to place a little arrow over the variable
\vec{u} and \vec{x}
\mathbb{R}^{2}

The set of vectors of the form

$$
\begin{array}{ll}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & x_{1}, x_{2} \\
\text { are is denoted by } \\
\mathbb{R}^{2} & \text { comeners } \\
\text { or }
\end{array}
$$

with x_{1} and x_{2} any real numbers is denoted by
(read "R two"). It's the set of all real ordered pairs.

Geometry

Each vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left(x_{1}, x_{2}\right)
$$

This is not to be confused with a row matrix.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \neq\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]
$$

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

$$
\left[\begin{array}{c}
-4 \\
1
\end{array}\right]=(-4,1), \quad\left[\begin{array}{l}
2 \\
5
\end{array}\right]=(2,5)
$$

Vector Equality

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar*.

Vector Equivalence: Equality of vectors is defined by

$$
\mathbf{u}=\mathbf{v} \text { if and only if } u_{1}=v_{1} \text { and } u_{2}=v_{2} .
$$

*A scalar is an element of the set from which u_{1} and u_{2} come. For our purposes, a scalar is a real number.

Algebraic Operations

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar.
Scalar Multiplication: The scalar multiple of \mathbf{u}

$$
c \mathbf{u}=\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right]
$$

Vector Addition: The sum of vectors \mathbf{u} and \mathbf{v}

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Examples

$$
\text { Let } \mathbf{u}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
7
\end{array}\right], \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]
$$

Evaluate
(a) $-2 \mathbf{u}=-2\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}-2(4) \\ -2(-2)\end{array}\right]=\left[\begin{array}{c}-8 \\ 4\end{array}\right]$

Examples

Let $\mathbf{u}=\left[\begin{array}{c}4 \\ -2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}-1 \\ 7\end{array}\right], \quad$ and $\quad \mathbf{w}=\left[\begin{array}{c}-3 \\ \frac{3}{2}\end{array}\right]$
Evaluate
(b) $-2 \mathbf{u}+3 \mathbf{v}$ we know $-2 \vec{u}=\left[\begin{array}{c}-8 \\ 4\end{array}\right]$

$$
\begin{array}{r}
3 \vec{v}=3\left[\begin{array}{c}
-1 \\
7
\end{array}\right]=\left[\begin{array}{c}
-3 \\
21
\end{array}\right], \text { so } \\
-2 \vec{u}+3 \vec{v}=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-3 \\
21
\end{array}\right]=\left[\begin{array}{c}
-11 \\
25
\end{array}\right]
\end{array}
$$

Examples

Let $\mathbf{u}=\left[\begin{array}{c}4 \\ -2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}-1 \\ 7\end{array}\right], \quad$ and $\quad \mathbf{w}=\left[\begin{array}{c}-3 \\ \frac{3}{2}\end{array}\right]$
(c) Is it true that $\mathbf{w}=-\frac{3}{4} \mathbf{u}$?

$$
\frac{-3}{4} \vec{u}=\left[\begin{array}{c}
-\frac{3}{4}(4) \\
-\frac{3}{4}(-2)
\end{array}\right]=\left[\begin{array}{c}
-3 \\
\frac{3}{2}
\end{array}\right]
$$

yes $\vec{w}=\frac{-3}{4} \vec{h}$ be cause they hove I st and $2^{\text {nd }}$ component in common.

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if $c>0$) or π (if $c<0$). We'll see that $0 \mathbf{u}=(0,0)$ for any vector \mathbf{u}.

$$
\begin{aligned}
& 2 \vec{v} \text { is parallel to } \vec{v} \\
& \text { and }+ \text { wile the } \\
& \text { length } \\
& -2 \vec{v} \text { would be } \\
& \text { parallel but } \\
& \text { flipped } 180^{\circ}
\end{aligned}
$$

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u}+\mathbf{v}$ of two vectors (each different from $(0,0))$ is the the fourth vertex of a parallelogram whose other three vertices are $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$, and (0,0).

Geometry of Algebra with Vectors

Figure: Left: $\frac{1}{2}(-4,1)=(-2,1 / 2)$. Right: $(-4,1)+(2,5)=(-2,6)$

