January 24 Math 3260 sec. 52 Spring 2022

Section 1.2: Row Reduction and Echelon Forms

< ロ > < 同 > < 回 > < 回 >

January 22, 2022

1/37

- We defined row echelon forms (ref) and reduced row echelon forms (rref).
- We defined pivot positions and pivot columns.
- And, we've seen the row reduction algorithm.

Basic & Free Variables

Suppose a system has *m* equations and *n* variables, $x_1, x_2, ..., x_n$. The first *n* columns of the augmented matrix correspond to the *n* variables.

- If the *ith* column is a pivot column, then x_i is called a **basic** variable.
- If the *ith* column is NOT a pivot column, then x_i is called a free variable.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -2 & 4 \\ 0 & 0 & 0 & 1 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The system would have 4 equations in 5 variables. The basic variables are x_1 x_3 and x_4 . The free variables are x_2 and x_5 .

Basic & Free Variables

When expressing the solution set of a consistent system with infinitely many solutions, we will **always** express basic variables in terms of free variables, and never vice versa.

The solution to this system will be expressed as

$$x_1 = 3 - x_2$$

 $x_3 = 4 + 2x_5$
 $x_4 = -9$
 x_2, x_5 are free

January 22, 2022

3/37

Consistent versus Inconsistent Systems

Consider each rref and the corresponding system. Note whether the system is consistent.

[1 0 2 3]	<i>x</i> ₁	+	0 <i>x</i> ₂	+	2 <i>x</i> ₃	=	3
0 1 1 0	0 <i>x</i> ₁	+	$1x_2$	+	$1x_{3}$	=	0
	0 <i>x</i> ₁	+	0 <i>x</i> ₂	+	0 <i>x</i> ₃	=	1
[1000]	<i>x</i> ₁	+	0 <i>x</i> ₂	+	0 <i>x</i> ₃	=	0
0104,	0 <i>x</i> ₁	+	$1x_{2}$	+	0 <i>x</i> ₃	=	4
001-3]	0 <i>x</i> ₁	+	0 <i>x</i> ₂	+	1 <i>x</i> 3	=	-3
[1200]	<i>x</i> ₁	+	2 <i>x</i> ₂	+	0 <i>x</i> ₃	=	0
0014,	0 <i>x</i> ₁	+	0 <i>x</i> ₂	+	<i>x</i> 3	=	4
$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0 <i>x</i> ₁	+	0 <i>x</i> ₂	+	0 <i>x</i> ₃	=	0

- 3

イロト イポト イヨト イヨト

An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most column of the augmented matrix is **NOT** a pivot column. That is, if and only if each echelon form DOES NOT have a row of the form

 $[0 \ 0 \ \cdots \ 0 \ b]$, for some nonzero b.

イロト 不得 トイヨト イヨト ヨー ろくの January 22, 2022

5/37

If a linear system is consistent, then it has

(i) exactly one solution if there are **no free variables**, or (ii) infinitely many solutions if there is at least one free variable.

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

When we give a vector a name (i.e. use a variable to denote a vector), the convention

- in typesetting is to use bold face
 - **u** and **x**
- in handwriting is to place a little arrow over the variable
 - \vec{u} and \vec{x}

イロト イポト イヨト イヨト

- 3

6/37

January 22, 2022

The set of vectors of the form

 $\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$

with x_1 and x_2 any real numbers is denoted by

Geometry

Each vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format

$$\left[\begin{array}{c} x_1\\ x_2 \end{array}\right] = (x_1, x_2).$$

This is not to be confused with a row matrix.

$$\left[\begin{array}{c} x_1\\ x_2 \end{array}\right] \neq \left[x_1 \ x_2\right]$$

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

$$\begin{bmatrix} -4\\1 \end{bmatrix} = (-4,1), \begin{bmatrix} 2\\5 \end{bmatrix} = (2,5)$$
January 22, 2022 9/37

Vector Equality

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar^{*}.

Vector Equivalence: Equality of vectors is defined by

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

*A **scalar** is an element of the set from which u_1 and u_2 come. For our purposes, a scalar is a *real* number.

イロト イポト イヨト イヨト

January 22, 2022

10/37

Algebraic Operations

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar.

Scalar Multiplication: The scalar multiple of u

$$c\mathbf{u} = \left[egin{array}{c} cu_1 \ cu_2 \end{array}
ight].$$

Vector Addition: The sum of vectors u and v

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

▲ ■ ▶ ▲ ■ ▶ ■ ∮ 𝔅 𝔅
 January 22, 2022 11/37

イロン イロン イヨン イヨン

Examples

Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$
Evaluate
(a) $-2\mathbf{u} = -2 \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -2(4) \\ -2(-2) \end{bmatrix} = \begin{bmatrix} -9 \\ 4 \end{bmatrix}$

Examples

Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$
Evaluate
(b) $-2\mathbf{u}+3\mathbf{v}$ we know $-2\mathbf{u} = \begin{bmatrix} -9 \\ 4 \end{bmatrix}$
 $3\mathbf{v} = 3 \begin{bmatrix} -1 \\ 7 \end{bmatrix} = \begin{bmatrix} -3 \\ 21 \end{bmatrix}$, so
 $-2\mathbf{u} + 3\mathbf{v} = \begin{bmatrix} -8 \\ 4 \end{bmatrix} + \begin{bmatrix} -3 \\ 21 \end{bmatrix} = \begin{bmatrix} -11 \\ 25 \end{bmatrix}$

<ロ > < 合 > < 言 > く 言 > こ の へ ペ January 22, 2022 13/37

Examples

Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$
(c) Is it true that $\mathbf{w} = -\frac{3}{4}\mathbf{u}$?

_

$$\frac{-3}{4} \stackrel{\sim}{u} = \begin{bmatrix} -\frac{3}{4} (\gamma) \\ -\frac{3}{4} (-2) \end{bmatrix} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$

You $\stackrel{\sim}{u} = \frac{-3}{4} \stackrel{\sim}{u}$ be cause they have $| st$
and 2^{nd} component in common.

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} .

January 22, 2022 15/37

イロト イヨト イヨト イヨト

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (each different from (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).

Geometry of Algebra with Vectors

Figure: Left: $\frac{1}{2}(-4, 1) = (-2, 1/2)$. Right: (-4, 1) + (2, 5) = (-2, 6)

□ ▶ < ⓓ ▶ < 팉 ▶ < 팉 ▶ 팉 りへぐ January 22, 2022 17/37