January 24 Math 3260 sec. 52 Spring 2024

$$
\text { Section 1.4: The Matrix Equation } A \mathbf{x}=\mathbf{b} \text {. }
$$

Definition

Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, $\cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax
is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n} .
$$

Remark: Note that based on the definition of scalar multiplication and vector addition, the product is a vector in \mathbb{R}^{m}.

Example: Find the product $A \mathbf{x}$.

$$
m=2, \quad n=3
$$

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right] \quad \vec{x} \text { is in } \prod^{3} \\
\vec{a}_{1}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \quad \vec{a}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \vec{a}_{3}=\left[\begin{array}{c}
-3 \\
4
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
A \vec{x} & =x \cdot \vec{a}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3} \\
& =2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
-3 \\
4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-9
\end{array}\right]
\end{aligned}
$$

Example: Find the product $A \mathbf{x}$.

$$
\begin{aligned}
& m=3, n=2 \\
& A=\left[\begin{array}{rr}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{r}
-3 \\
2
\end{array}\right] \\
& \vec{x} \text { is in } \mathbb{R}^{2} \\
& \vec{a}_{1}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right] \\
& A \vec{x}=-3\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
\end{aligned}
$$

Example
Is the product $A \mathbf{x}$ defined if $A=\left[\begin{array}{rr}2 & 4 \\ -1 & 1 \\ 0 & 3\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right]$?

A has two columns, \vec{x} has 3 components. $A \vec{x}$ is nat defined.

Linear Systems, Vector Equations, \& Matrix Equations Write the linear system as a vector equation and then as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$.

$$
\begin{array}{cc}
2 x_{1}-3 x_{2}+x_{3} & =2 \\
x_{1}+x_{2}+ & =-1
\end{array}
$$

Vector ign.

$$
x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Matrix en.

$$
\left[\begin{array}{rrr}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Theorem

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$,
\cdots, \mathbf{a}_{n}, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] . \mathrm{C}
$$

Corollary

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Remark

In other words, if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then the corresponding linear system, $A \mathbf{x}=\mathbf{b}$, is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example
Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where
$A=\left[\begin{array}{rrr}1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7\end{array}\right]$.
We con consider the line or system hawing angmunted matrix $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$.

$$
\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right]
$$

Do cows ops to determine is the last column is a pivot column.

$$
\begin{aligned}
& 4 R_{1}+R_{2} \rightarrow R_{2} \\
& 3 R_{1}+R_{3} \rightarrow R_{3}
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 4 & 10 & b_{2}+4 b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2} \leftrightarrow R_{3} \\
& -2 R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1}
\end{array}\right] \\
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 0 & 0 & b_{2}+4 b_{1}-2\left(b_{3}+3 b_{1}\right)
\end{array}\right]}
\end{aligned}
$$

The last column is not a pivot column, the system is consistent, if

$$
\begin{aligned}
& b_{2}+4 b_{1}-2 b_{3}-6 b_{1}=0 \\
& -2 b_{1}+b_{2}-2 b_{3}=0
\end{aligned}
$$

This is a system whose augmented matrix
is

$$
\left[\begin{array}{llll}
-2 & 1 & -2 & 0
\end{array}\right] \xrightarrow{\text { reef }}\left[\begin{array}{llll}
\left.1 \begin{array}{lll}
-\frac{1}{2} & 1 & 0
\end{array}\right]
\end{array}\right.
$$

The solutions are given by

$$
b_{1}=\frac{1}{2} b_{2}-b_{3}
$$

b_{2}, b_{3} are free
$A \vec{x}=\vec{b}$ is solvable if
$\vec{b}=\left[\begin{array}{c}\frac{1}{2} b_{2}-b_{3} \\ b_{2} \\ b_{3}\end{array}\right]$ when $b_{2} b_{3}$ ane any real number.

