January 25 Math 2306 sec. 51 Spring 2023

Section 3: Separation of Variables

We defined the first order equation as being separable if it has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

To solve a separable equation, we separate the variables. That is, we convert the ODE to

$$
\int \frac{d y}{h(y)}=\int g(x) d x
$$

and integrate to obtain a one-parameter family of solutions (usually defined implicitly).

Solutions Defined by Integrals

The Fundamental Theorem of Calculus tells us that: If g and $\frac{d y}{d x}$ are continuous on an interval $\left[x_{0}, b\right)$ and x is in this interval, then

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \text { and } \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right) .
$$

Theorem: If g is continuous on some interval containing x_{0}, then the function

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

is a solution of the initial value problem

$$
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}
$$

Example
Express the solution of the IVP in terms of an integral.

$$
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1 \quad y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

Here, $g(t)=\sin \left(t^{2}\right)$

$$
x_{0}=\sqrt{\pi} \quad \text { and } y_{0}=1
$$

The solution to the IVP is

$$
y=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

Let's verify:
Dues $y(\sqrt{\pi})=1$? ys.

$$
y(\sqrt{\pi})=1+\int_{\sqrt{\pi}}^{\sqrt{\pi}} \sin \left(t^{2} \mid d t=1+0=1\right.
$$

Is $\frac{d y}{d x}=\sin \left(x^{2}\right)$? yes

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t\right) \\
& =\frac{d}{d x}(1)+\frac{d}{d x} \int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t \\
& =0+\sin \left(x^{2}\right) \quad \text { i.e. } \frac{d y}{d x}=\sin \left(x^{2}\right)
\end{aligned}
$$

Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval / of definition of a solution, we can write the standard form of the equation

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)}
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(x)=\frac{g(x)}{a_{1}(x)}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the equation

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.
The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example

$$
x^{2} \frac{d y}{d x}+2 x y=e^{x}
$$

Let's assume that $x>0$.
Note that the left side is the derivative of the product $x^{2} y$.

Note that $\frac{d}{d x}\left(x^{2} y\right)=x^{2} \frac{d y}{d x}+2 x y$
The ODE can be written as

$$
\frac{d}{d x}\left(x^{2} y\right)=e^{x}
$$

Integrate wi respect to x

$$
\begin{aligned}
\int \frac{d}{d x}\left(x^{2} y\right) d x & =\int e^{x} d x \\
x^{2} y & =e^{x}+C
\end{aligned}
$$

The solutions are

$$
y=\frac{e^{x}+c}{x^{2}}
$$

