January 26 Math 3260 sec. 51 Spring 2022

Section 1.3: Vector Equations

We defined a vector (or column vector) as a matrix consisting of a single column.

The set \mathbb{R}^2 is the set of all real ordered pairs $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where x_1 and x_2 are real numbers. We equate them in the traditional way with points in the Cartesian plane.

The components of the vector, i.e. the entries in the vector as a matrix, are referred to as **scalars**.

Algebraic Operations Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar.

Vector Equivalence: Equality of vectors is defined by

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

Scalar Multiplication: The scalar multiple of u

$$c\mathbf{u} = \left[egin{array}{c} cu_1 \ cu_2 \end{array}
ight]$$

Vector Addition: The sum of vectors u and v

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Geometry of Algebra with Vectors

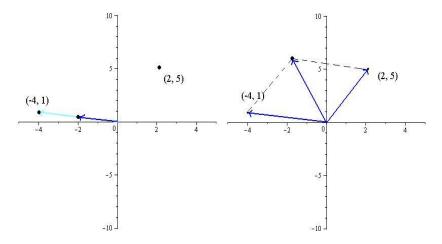


Figure: Left: $\frac{1}{2}(-4, 1) = (-2, 1/2)$. Right: (-4, 1) + (2, 5) = (-2, 6)

< □ > < @ > < E > < E > E のへで January 24, 2022 3/23

Vectors in \mathbb{R}^3 ("R three")

A vector in \mathbb{R}^3 is a 3×1 column matrix. For example

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}.$$

Similar to vectors in \mathbb{R}^2 , vectors in \mathbb{R}^3 are ordered triples.

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix} = (1,3,-1).$$

January 24, 2022 4/23

Vectors in \mathbb{R}^n (R n)

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered *n*-tuples. For example

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by **0** or $\vec{0}$ and is not to be confused with the scalar 0.

```
Scalar multiplication and vector addition will be defined component-wise in \mathbb{R}^n
```

January 24, 2022

5/23

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (viii) $1\mathbf{u} = \mathbf{u}$

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_1, \quad -2\mathbf{v}_1+4\mathbf{v}_2, \quad \frac{1}{3}\mathbf{v}_2+\sqrt{2}\mathbf{v}_1, \quad \text{and} \quad \mathbf{0}=0\mathbf{v}_1+0\mathbf{v}_2.$$

January 24, 2022 7/23

イロト 不得 トイヨト イヨト 二日

Example

Let $\mathbf{a}_1 = \begin{vmatrix} 1 \\ -2 \\ -1 \end{vmatrix}$, $\mathbf{a}_2 = \begin{vmatrix} 3 \\ 0 \\ 2 \end{vmatrix}$, and $\mathbf{b} = \begin{vmatrix} -2 \\ -2 \\ -3 \end{vmatrix}$. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . bis a linear combination of a , and az if there exists scalars C, and C, such that $c_1 \vec{q}_1 + c_2 \vec{q}_2 = \vec{b}$. This would give the equation $C_{1} \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} + C_{2} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$ $\begin{vmatrix} C_1 \\ -2C_1 \\ -2C_1 \end{vmatrix} + \begin{vmatrix} 3C_2 \\ 0 \\ 2C_2 \end{vmatrix} = \begin{vmatrix} -2 \\ -2 \\ -3 \end{vmatrix}$

$$\begin{bmatrix} C_1 + 3C_2 \\ -2C_1 \\ -C_1 + 2C_2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$$

Vector equality is defined componentwise, so this is equivalent to the linear system

We could use an anymoded matrix $\begin{bmatrix}
1 & 3 & -2 \\
-2 & 0 & -2 \\
-1 & 2 & -3
\end{bmatrix}
\xrightarrow{\text{rref}}
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 6
\end{bmatrix}
\xrightarrow{\text{rref}}
\xrightarrow{r$ The system is consistent, From the rret $C_1 = 1$ are $C_2 = -1$. $s = 1 \overline{a_1} - 1 \overline{a_2}$. a b is a linear combination of a, and az. Hence

. .

January 24, 2022 10/23

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for $j = 1, ..., n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_j is a vector in \mathbb{R}^m .

January 24, 2022 11/23

2

イロト イヨト イヨト イヨト

Vector and Matrix Equations

The vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}]. \tag{1}$$

January 24, 2022

12/23

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of **Span**

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by

 $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\operatorname{Span}(S).$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{v_1, ..., v_n\}$.

To say that a vector **b** is in Span{ v_1, \ldots, v_p } means that there exists a set of scalars c_1, \ldots, c_p such that **b** can be written as

 $C_1 \mathbf{V}_1 + \cdots + C_p \mathbf{V}_p$

January 24, 2022

13/23

If **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }, then $\mathbf{b} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$ is consistent.

Examples
Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1\\ 4\\ -2 \end{bmatrix}$
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4\\ 2\\ 1 \end{bmatrix}$ is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.
This is equivalent to determining if the
system of equations we argumented matrix
 $\begin{bmatrix} a_1 & a_2 & b \end{bmatrix}$ is consistent.
 $\begin{bmatrix} a_1 & a_2 & b \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4\\ 2 & 1 \end{bmatrix}$ for ef $\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$
The system is inconsistent

Hence b is not in Span {ãi, ãz}.

4回▶ 4日▶ 4日▶ 4日▶ 4日▶ 日 のへで January 24, 2022 16/23

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ 10 \end{bmatrix}$$
 is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.

$$\begin{bmatrix} \overline{a}, \overline{a}_2 & \overline{b} \end{bmatrix}^{=} \begin{bmatrix} 1 & -1 & s \\ 1 & 4 & -s \\ 2 & -2 & 10 \end{bmatrix} \xrightarrow{\operatorname{creef}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{Ves}_{i}, \overline{b} \text{ is in Spon} \{\overline{a}, \overline{a}_2\} \text{ In fact}$$

$$\overline{b} = 3\overline{a}_i - 2\overline{a}_2$$

January 24, 2022 17/23

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ ○

Another Example

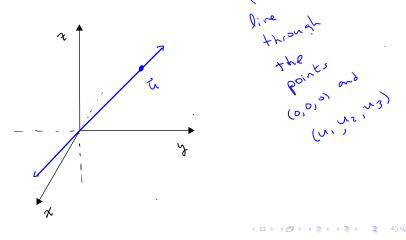
Give a geometric description of the subset of \mathbb{R}^2 given by Span $\left\{ \left| \begin{array}{c} 1 \\ 0 \end{array} \right| \right\}$. This contains all vectors of the form C[0] = [0] for all possible values of c. Note [0] = (c, 0) This is the line y=0 o.k. a the x-axis.

January 24, 2022 19/23

イロト イポト イヨト イヨト 二日

Span $\{\mathbf{u}\}$ in \mathbb{R}^3

If u is any nonzero vector in $\mathbb{R}^3,$ then $\text{Span}\{u\}$ is a line through the origin parallel to u.



Span $\{u, v\}$ in \mathbb{R}^3

If **u** and **v** are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

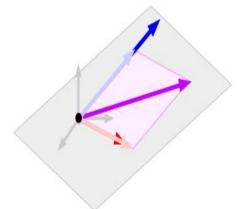


Figure: The red and blue vectors are \mathbf{u} and \mathbf{v} . The plane is the collection of all possible linear combinations. (A purple representative is shown.)