## January 26 Math 3260 sec. 51 Spring 2024

 Section 1.4: The Matrix Equation $\mathbf{A x}=\mathbf{b}$.
## Theorem

If $A$ is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and $\mathbf{b}$ is in $\mathbb{R}^{m}$, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] .
$$

We saw that the matrix equation $A \mathbf{x}=\mathbf{b}$ is consistent if and only if $\mathbf{b}$ is in the subset of $\mathbb{R}^{m}$ spanned by the columns of $A$.

## Example

Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where
$A=\left[\begin{array}{rrr}1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7\end{array}\right]$.
We set up the augmented matrix $[A \mathbf{b}]$ and did row reduction to conclude that the equation is consistent provided

$$
b_{1}=\frac{1}{2} b_{2}-b_{3} \text {, i.e., } \quad \mathbf{b}=\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

where $b_{2}$ and $b_{3}$ are any real numbers.
Now, lets express the vectors $\mathbf{b}$ in terms of a span.

Example Continued
Find a set $S$ of appropriate fixed vectors in $\mathbb{R}^{3}$ so that we can say that $A \mathbf{x}=\mathbf{b}$ is consistent provided $\mathbf{b}$ is in $\operatorname{Span}(S)$.

$$
\begin{aligned}
\mathbf{b}=\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right] & =\left[\begin{array}{c}
\frac{1}{2} b_{2} \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-b_{3} \\
0 \\
b_{3}
\end{array}\right] \\
& =b_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

This is a linear combo of

$$
\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \text {. }
$$

We can sung that $A \vec{x}=\vec{l}_{0}$ is solvable

$$
\text { if } \vec{b} \text { is in } \operatorname{spon}\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

## Theorem (first in a string of equivalency theorems)

## Theorem

Let $A$ be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each $\mathbf{b}$ in $\mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each $\mathbf{b}$ in $\mathbb{R}^{m}$ is a linear combination of the columns of $A$.
(c) The columns of $A$ span $\mathbb{R}^{m}$.
(d) A has a pivot position in every row.

Remark: That last statement, (d), is about coefficient matrix $A$. It's not about an augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$.

## A Special Product

Definition
Consider two vectors $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ in $\mathbb{R}^{n}$. The dot
product of $\mathbf{x}$ and $\mathbf{y}$, denoted

$$
\mathbf{x} \cdot \mathbf{y}
$$

is defined by

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Remark: Note that the dot product of two vectors is a scalar. This is an example of an inner product. It's sometimes called a scalar product.

## Computing $A \mathbf{x}$

The dot product can be used as an alternative way of computing a product $A \mathbf{x}$. If $A$ is an $m \times n$ matrix and $\mathbf{x}$ is a vector in $\mathbb{R}^{n}$, then the $i^{\text {th }}$ component of the product $A \mathbf{x}$ is the dot product of the $i^{\text {th }}$ row of $A$ and the vector $\mathbf{x}$.

For example

$$
\left[\begin{array}{rrr}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
(1)(2)+(0)(1)+(-3)(-1) \\
(-2)(2)+(-1)(1)+(4)(-1)
\end{array}\right]=\left[\begin{array}{r}
5 \\
-9
\end{array}\right]
$$

Evaluate
Use the dot product approach to compute each product.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right]} \\
& 3 x^{2}
\end{aligned} \underset{{ }^{-\mathbb{R}^{2}}}{\left[\begin{array}{c}
-3 \\
2
\end{array}\right]}=\left[\begin{array}{l}
-3(2)+2(4) \\
-3(-1)+2(1) \\
-3(0)+2(3)
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
$$

## Identity Matrix

## Definition: Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else-i.e. one that looks like

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

the $n \times n$ identity matrix and denote it by $I_{n}$. (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each $\mathbf{x}$ in $\mathbb{R}^{n}$

$$
I_{n} \mathbf{x}=\mathbf{x}
$$

## Properties of the Matrix Product

## Theorem

If $A$ is an $m \times n$ matrix, $\mathbf{u}$ and $\mathbf{v}$ are vectors in $\mathbb{R}^{n}$, and $c$ is any scalar, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$, and
(b) $A(c \mathbf{u})=c A \mathbf{u}$.

Remark: These two properties are a pretty big deal! These are the two properties that constitute being Linear (as in Linear Algebra).

## Section 1.5: Solution Sets of Linear Systems

## Definition

A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix $A$ and where $\mathbf{0}$ is the zero vector in $\mathbb{R}^{m}$.

## Theorem

Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, $\mathbf{x}=\mathbf{0}$, called the trivial solution.

## Homogeneous Linear Systems

We know that the homogeneous system

$$
A \mathbf{x}=\mathbf{0}
$$

is always consistent because $\mathbf{x}=\mathbf{0}$ (in $\mathbb{R}^{n}$ ) is necessarily a solution.
The interesting question is:

$$
\text { Does } A \mathbf{x}=\mathbf{0} \text { have any nontrivial solutions? }
$$

## Theorem

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Homogeneous Linear Systems
Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(a) $2 x_{1}+x_{2}=0$ in matrix format $x_{1}-3 x_{2}=0$

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

we con use an augmented matrix

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & -3 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

There are no fine variables. The system has only the trivial solution,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

(b) $3 x_{1}+5 x_{2}-4 x_{3}=0$ in motif

$$
\begin{aligned}
-3 x_{1}-2 x_{2}+4 x_{3} & =0 \\
6 x_{1}+x_{2}-8 x_{3} & =0 \\
{\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Using an augmented matrix

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From the ref, $x_{3}$ is free. Thereare nontrisid solutions. The solutions saris fy $\quad x_{1}=\frac{4}{3} x_{3}$

$$
\begin{aligned}
& x_{2}=0 \\
& x_{3} \text { is fire }
\end{aligned}
$$

we can express this as a vector.

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 / 3 x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
$$

(c) $x_{1}-2 x_{2}+5 x_{3}=0$
we can use on aug merited matrix
$\left[\begin{array}{llll}1 & -2 & 5 & 0\end{array}\right]$ which is already on ret.
The solution, are given by

$$
\begin{aligned}
& x_{1}=2 x_{2}-5 x_{3} \\
& x_{2}, x_{3} \text { are free. }
\end{aligned}
$$

There are nontrivid solutions, In vector form,

$$
\vec{x}=\left[\begin{array}{c}
2 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right]
$$

$$
=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] .
$$

The solutions are in $\operatorname{Spon}\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]-\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right]\right\}$.

