January 26 Math 3260 sec. 51 Spring 2024

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n , and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

We saw that the matrix equation $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the subset of \mathbb{R}^m spanned by the columns of A.

Example

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \left[\begin{array}{rrr} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{array} \right].$$

We set up the augmented matrix $[A \ \mathbf{b}]$ and did row reduction to conclude that the equation is consistent provided

$$b_1 = \frac{1}{2}b_2 - b_3$$
, i.e., $\mathbf{b} = \begin{bmatrix} \frac{1}{2}b_2 - b_3 \\ b_2 \\ b_3 \end{bmatrix}$

where b_2 and b_3 are any real numbers.

Now, lets express the vectors **b** in terms of a span.

Example Continued

Find a set S of appropriate fixed vectors in \mathbb{R}^3 so that we can say that $A\mathbf{x} = \mathbf{b}$ is consistent provided \mathbf{b} is in $\mathrm{Span}(S)$.

$$\mathbf{b} = \begin{bmatrix} \frac{1}{2}b_2 - b_3 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}b_2 \\ b_2 \\ 0 \end{bmatrix} + \begin{bmatrix} -b_3 \\ b_3 \end{bmatrix}$$

$$= b_2 \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + b_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
This is a linear ambor of

We can say that $A\vec{x}=\vec{b}$ is solvable

If \vec{b} is in Spon $\{\begin{bmatrix}1/2\\0\end{bmatrix},\begin{bmatrix}-1\\0\end{bmatrix}\}$.

Theorem (first in a string of equivalency theorems)

Theorem

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

Remark: That last statement, (d), is about *coefficient* matrix A. It's not about an augmented matrix $[A \ \mathbf{b}]$.

A Special Product

Definition

Consider two vectors
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ in \mathbb{R}^n . The **dot**

product of x and y, denoted

$$\mathbf{x} \cdot \mathbf{y}$$

is defined by

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

Remark: Note that the dot product of two vectors is a scalar. This is an example of an *inner product*. It's sometimes called a *scalar product*.

Computing Ax

The dot product can be used as an alternative way of computing a product $A\mathbf{x}$. If A is an $m \times n$ matrix and \mathbf{x} is a vector in \mathbb{R}^n , then the i^{th} component of the product $A\mathbf{x}$ is the dot product of the i^{th} row of A and the vector \mathbf{x} .

For example

$$\begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} (1)(2) + (0)(1) + (-3)(-1) \\ (-2)(2) + (-1)(1) + (4)(-1) \end{bmatrix} = \begin{bmatrix} 5 \\ -9 \end{bmatrix}$$

8/32

Evaluate

Use the dot product approach to compute each product.

$$\begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -3(z) + z(4) \\ -3(-1) + 2(1) \\ -3(0) + 2(3) \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$3 \times 2 \qquad \text{R}^{2}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \times_1 + 0 \times_2 + 0 \times_3 \\ 0 \times_1 + 1 \times_2 + 0 \times_3 \\ 0 \times_1 + 0 \times_2 + 1 \times_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$3 \times 3$$

Identity Matrix

Definition: Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else—i.e. one that looks like

$$\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}$$

the $n \times n$ identity matrix and denote it by I_n . (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^n

$$I_n \mathbf{x} = \mathbf{x}$$
.

Properties of the Matrix Product

Theorem

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , and \mathbf{c} is any scalar, then

- (a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, and
- (b) $A(c\mathbf{u}) = cA\mathbf{u}$.

Remark: These two properties are a pretty **big deal!** These are the two properties that constitute being **Linear** (as in *Linear Algebra*).

Section 1.5: Solution Sets of Linear Systems

Definition

A linear system is said to be **homogeneous** if it can be written in the form

$$A\mathbf{x} = \mathbf{0}$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^m .

Theorem

Theorem: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution, $\mathbf{x} = \mathbf{0}$, called the **trivial solution**.

Homogeneous Linear Systems

We know that the homogeneous system

$$A\mathbf{x} = \mathbf{0}$$

is always consistent because $\mathbf{x} = \mathbf{0}$ (in \mathbb{R}^n) is necessarily a solution.

The interesting question is:

Does Ax = 0 have any nontrivial solutions?

Theorem

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Homogeneous Linear Systems

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(a)
$$2x_1 + x_2 = 0$$
 In matrix found
$$x_1 - 3x_2 = 0$$

$$\begin{cases}
z & i \\
i & -3
\end{cases} \begin{bmatrix}
x_i \\
y_z
\end{bmatrix} = \begin{bmatrix}0 \\
0
\end{cases}$$
Us can use an argumented matrix
$$\begin{bmatrix}
z & i & 0 \\
i & -3 & 0
\end{bmatrix} \text{ fret } \begin{bmatrix}
1 & 0 & 0 \\
0 & i & 0
\end{bmatrix}$$
There are no free variables. The system has only the trivial solution,
$$\begin{bmatrix}
x_i \\
x_z
\end{bmatrix} = \begin{bmatrix}0 \\
0
\end{bmatrix}$$

January 24, 2024

14/32

$$\begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Using an argumented matrix

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & 0 & -413 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

From the ref, ×3 is free Thoreare non-trivial solutions. The solutions satisfy x = = X3

$$\chi_1 = \frac{4}{3}\chi_3$$
 $\chi_2 = 0$
 χ_3 is free

January 24, 2024 16/32

Use on express this as a vector, $\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4/3 X_3 \\ 0 \\ X_3 \end{bmatrix} = X_3 \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$ $\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$

this called

(c)
$$x_1 - 2x_2 + 5x_3 = 0$$

We can use an any newted marix
[1-2 5 07 which is already an reet.

The solutions are given by

There are nontrivial solutions. In vector

$$\overset{?}{\times} = \begin{bmatrix} 2X_2 - 5X_3 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2X_2 \\ X_2 \\ 0 \end{bmatrix} + \begin{bmatrix} -5X_3 \\ 0 \\ X_3 \end{bmatrix}$$

January 24, 2024 18/32

$$= \chi_{2} \left[\begin{array}{c} z \\ 1 \\ 0 \end{array} \right] + \chi_{3} \left[\begin{array}{c} -5 \\ 0 \\ 1 \end{array} \right] .$$

The solutions are in Spon
$$\left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 0 \end{bmatrix} \right\}$$
.