January 26 Math 3260 sec. 52 Spring 2022

Section 1.3: Vector Equations
We defined a vector (or column vector) as a matrix consisting of a single column.

The set \mathbb{R}^{2} is the set of all real ordered pairs $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where x_{1} and x_{2} are real numbers. We equate them in the traditional way with points in the Cartesian plane.

The components of the vector, i.e. the entries in the vector as a matrix, are referred to as scalars.

Algebraic Operations

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar.
Vector Equivalence: Equality of vectors is defined by

$$
\mathbf{u}=\mathbf{v} \text { if and only if } u_{1}=v_{1} \text { and } u_{2}=v_{2} .
$$

Scalar Multiplication: The scalar multiple of \mathbf{u}

$$
c \mathbf{u}=\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right] .
$$

Vector Addition: The sum of vectors \mathbf{u} and \mathbf{v}

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Geometry of Algebra with Vectors

Figure: Left: $\frac{1}{2}(-4,1)=(-2,1 / 2)$. Right: $(-4,1)+(2,5)=(-2,6)$

Vectors in \mathbb{R}^{3} ("R three")

A vector in \mathbb{R}^{3} is a 3×1 column matrix. For example

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right], \quad \text { or } \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Similar to vectors in \mathbb{R}^{2}, vectors in \mathbb{R}^{3} are ordered triples.

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]=(1,3,-1) .
$$

Vectors in $\mathbb{R}^{n}(\mathbb{R} n)$

A vector in \mathbb{R}^{n} for $n \geq 2$ is a $n \times 1$ column matrix. These are ordered n-tuples. For example

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by 0 or $\overrightarrow{0}$ and is not to be confused with the scalar 0 .

```
Scalar multiplication and vector addition will be
defined component-wise in }\mp@subsup{\mathbb{R}}{}{n
```


Algebraic Properties on \mathbb{R}^{n}

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d^{1}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
(viii) $\mathbf{1 u}=\mathbf{u}$
${ }^{1}$ The term -u denotes $(-1) \mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ in \mathbb{R}^{n} is a vector \mathbf{y} of the form

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{1}, \ldots, c_{p} are often called weights.

For example, suppose we have two vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Some linear combinations include

$$
3 \mathbf{v}_{1}, \quad-2 \mathbf{v}_{1}+4 \mathbf{v}_{2}, \quad \frac{1}{3} \mathbf{v}_{2}+\sqrt{2} \mathbf{v}_{1}, \quad \text { and } \quad \mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}
$$

Example
Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-2 \\ -2 \\ -3\end{array}\right]$. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.

This con be restated as determine if there exist scalars C_{1} and C_{2} such that
$c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}=\vec{b}$. This gives the
equation

$$
\begin{aligned}
& c_{1} {\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right] } \\
& {\left[\begin{array}{c}
c_{1} \\
-2 c_{1} \\
-c_{1}
\end{array}\right]+\left[\begin{array}{l}
3 c_{2} \\
0 \\
2 c_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right] }
\end{aligned}
$$

$$
\left[\begin{array}{l}
c_{1}+3 c_{2} \\
-2 c_{1} \\
-c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right]
$$

This would require

$$
\begin{aligned}
c_{1}+3 c_{2} & =-2 \\
-2 c_{1} & =-2 \\
-c_{1}+2 c_{2} & =-3
\end{aligned}
$$

To determine if this is consistent, we con use an augmented motrix

$$
\left[\begin{array}{ccc}
1 & 3 & -2 \\
-2 & 0 & -2 \\
-1 & 2 & -3
\end{array}\right] \xrightarrow[\text { TI- } 92]{\text { ret }}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

The right most column is not a pivot colunn hence the system is consistent.

More over, we see that $C_{1}=1$ and $C_{2}=-1$
That is $\vec{b}_{b}=1 \vec{a}_{1}-1 \vec{a}_{2}$.
\vec{b} is a linear combination of \vec{a}. and \vec{a}_{2}.

Some Convenient Notation

Letting $\mathbf{a}_{1}=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right]$, and in general $\mathbf{a}_{j}=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$, for
$j=1, \ldots, n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Note that each vector \mathbf{a}_{j} is a vector in \mathbb{R}^{m}.

Vector and Matrix Equations

The vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}] . \tag{1}
\end{array}\right.
$$

In particular, \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of Span

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}(S) .
$$

It is called the subset of \mathbb{R}^{n} spanned by (a.k.a. generated by) the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

To say that a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ means that there exists a set of scalars c_{1}, \ldots, c_{p} such that \mathbf{b} can be written as

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Span

If \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then $\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$. From the previous result, we know this is equivalent to saying that the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}
$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $\left[\mathbf{v}_{1} \cdots \mathbf{v}_{p} \mathbf{b}\right]$ is consistent.

Examples
Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{a}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right]$.
(a) Determine if $\mathbf{b}=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

This cont re restated as determine if the finer system w/ augmented matrix
$\left[\begin{array}{lll}\vec{a} & \vec{a}_{2} & \vec{b}\end{array}\right]$ is consistent.

$$
\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{a}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & 2 \\
2 & -2 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The liver, system is in consistent; that last column is a pivot column.

So \vec{b} is not in $\operatorname{spon}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$.
(b) Determine if $\mathbf{b}=\left[\begin{array}{c}5 \\ -5 \\ 10\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

The system has augmented matrix

$$
\left[\begin{array}{lll}
\vec{a}_{1} & \overrightarrow{a_{2}} & \vec{b}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 5 \\
1 & 4 & -5 \\
2 & -2 & 10
\end{array}\right], \xrightarrow{\operatorname{cret}}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
& & n \\
\text { not } \\
\text { not }
\end{array}\right]
$$

The system is consistent, ie.
\vec{b} is in Soon $\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$.

Another Example
Give a geometric description of the subset of \mathbb{R}^{2} given by $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.

If \vec{x} is in $\operatorname{Spon}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$, then $\vec{x}=c\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}C \\ 0\end{array}\right]$ for some number C.

Recall $\left[\begin{array}{l}c \\ 0\end{array}\right]=(c, 0)$.
This is the line $y=0$, ie, the x-axis.

$\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}

If \mathbf{u} is any nonzero vector in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}\}$ is a line through the origin parallel to \mathbf{u}.

亿

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^{3}

If \mathbf{u} and \mathbf{v} are nonzero, and nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

Figure: The red and blue vectors are \mathbf{u} and \mathbf{v}. The plane is the collection of all possible linear combinations. (A purple representative is shown.)

