January 28 Math 3260 sec. 51 Spring 2022

Section 1.4: The Matrix Equation $A \mathbf{x}=\mathbf{b}$.
Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n} . \quad \stackrel{\rightharpoonup}{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Example
Find the product $A \mathbf{x}$. Simplify to the extent possible.

$$
A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]
$$

A is $2 \times 3 \quad \vec{x}$ is in \mathbb{R}^{3}
Here $\vec{a}_{1}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \vec{a}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right] \leftarrow$ in \mathbb{R}^{2}

$$
\begin{gathered}
A \vec{x}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3} \\
A \vec{x}=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
-3 \\
4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-9
\end{array}\right] .
\end{gathered}
$$

Example
Find the product $\boldsymbol{A x}$. Simplify to the extent possible.

$$
A=\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right]
$$

A is 3×2, its columns ore in \mathbb{R}^{3} \vec{x} is in \mathbb{R}^{2}.

$$
\vec{a}_{1}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \text { and } \vec{a}_{2}=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]
$$

$$
\begin{aligned}
A \vec{x} & =x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2} \\
& =-3\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{c}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
2 \\
5 \\
6
\end{array}\right] \\
& =\left[\begin{array}{c}
-6 \\
3 \\
0
\end{array}\right]+\left[\begin{array}{c}
8 \\
2 \\
6
\end{array}\right]
\end{aligned}
$$

Example
Write the linear system as a vector equation and then as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$.

$$
\begin{gathered}
2 x_{1}-3 x_{2}+x_{3}=2 \\
x_{1}+x_{2}+=-1
\end{gathered}
$$

As a vector equation, this is

$$
x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

As a matrix equation, this is

$$
\left[\begin{array}{rrr}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

$$
A=\left[\begin{array}{rrr}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \vec{b}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\begin{aligned}
& \qquad\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] . \\
& \text { Sthis can be written }
\end{aligned}\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right] .
$$

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example
Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]
$$

This requires the liner system with augmented matrix $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ to be consistent.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right]} & =\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right] \quad \text { Do row reduction } \\
& 4 R_{1}+R_{2} \rightarrow R_{2} \\
& 3 R_{1}+R_{3}
\end{array}\right) R_{3} \quad \text { January 26,2022} 88 / 17
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1}
\end{array}\right] \quad R_{2} \leftrightarrow R_{3}} \\
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1}
\end{array}\right]-2 R_{2}+R_{3} \rightarrow R_{3}} \\
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 0 & 0 & -2 b_{1}+b_{2}-2 b_{3}
\end{array}\right]}
\end{aligned}
$$

The system is consistent if and only if the $4^{\text {th }}$ Column is Not a pivot column.

This requires $-2 b_{1}+b_{2}-2 b_{3}=0$
So the vectors $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
would require entries that satisfy this equation for $A \vec{x}=\vec{b}$ to hove a solution.

