January 29 Math 3260 sec. 51 Spring 2024 Section 1.5: Solution Sets of Linear Systems

Definition

A linear system is said to be **homogeneous** if it can be written in the form

 $A\mathbf{x} = \mathbf{0}$

for some $m \times n$ matrix A and where **0** is the zero vector in \mathbb{R}^m .

Theorems

Theorem 1: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution, $\mathbf{x} = \mathbf{0}$, called the **trivial solution**.

Theorem 2: The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Examples from last time:

We used an augmented matrix to identify solution sets.

(a) $\begin{array}{ccc} 2x_1 + x_2 = 0\\ x_1 - 3x_2 = 0 \end{array}$ trivial solution only $\mathbf{x} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ $\mathbf{x} = x_3 \begin{bmatrix} \frac{4}{3} \\ 4 \end{bmatrix}$, x_3 is free (c) $x_1 - 2x_2 + 5x_3 = 0$ nontrivial solutions **x** = $x_2 \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} + x_3 \begin{vmatrix} -5 \\ 0 \\ 1 \end{vmatrix}$, x_2, x_3 are free

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x} = x_3 \mathbf{v}$. Example (c)'s solution set consisted of vectors that look like $\mathbf{x} = x_2 \mathbf{u} + x_3 \mathbf{v}$. Instead of using the variables x_2 and/or x_3 we often substitute **parameters** such as *s* or *t*.

Parametric Vector Form of a Solution SetThe forms $\mathbf{x} = s\mathbf{u}$, or $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$ sare called parametric vector forms.s

Remark: Since these are **linear combinations**, an alternative way to express the solution sets would be

 $\mathsf{Span}\{\bm{u}\} \quad \mathsf{Or} \quad \mathsf{Span}\{\bm{u},\bm{v}\}.$

January 28, 2024

The parametric vector form of the solution set of the system

$$3x_{1} + 5x_{2} - 4x_{3} = 0$$

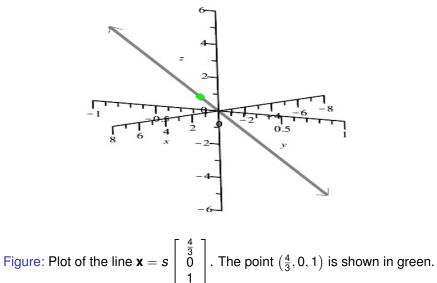
$$-3x_{1} - 2x_{2} + 4x_{3} = 0 \text{ is}$$

$$6x_{1} + x_{2} - 8x_{3} = 0$$

$$\mathbf{x} = \mathbf{s} \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{s} \in \mathbb{R}.$$

This is a line in \mathbb{R}^3 through the points (0,0,0) and $(\frac{4}{3},0,1)$.

January 28, 2024 4/33



January 28, 2024 5/33

The **parametric vector form** of the solution set of $x_1 - 2x_2 + 5x_3 = 0$ is

$$\mathbf{x} = \mathbf{s} \begin{bmatrix} 2\\1\\0 \end{bmatrix} + t \begin{bmatrix} -5\\0\\1 \end{bmatrix}, \text{ where } \mathbf{s}, t \in \mathbb{R}.$$

This is a plane in \mathbb{R}^3 that contains the points (0,0,0), (2,1,0), and (-5,0,1).

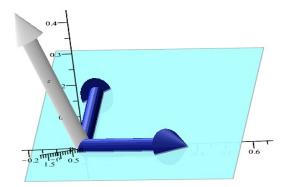


Figure: Plot of the plane $\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$. The blue vectors are in the directions of (2, 1, 0) and (-5, 0, 1). (The white vector is perpendicular—a.k.a. *normal*—to the plane.)

• • • • • • • • • • • •

Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

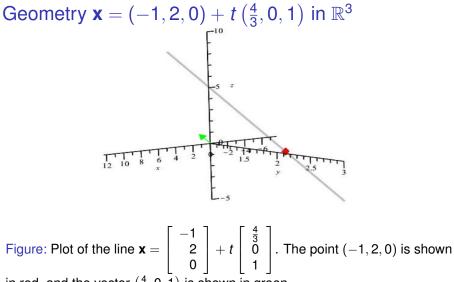
$$\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -4/3 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$X_3$$
 is free.
 $X_1 = -1 + \frac{1}{3}X_3$ parametric
 $X_2 = 2$ parametric
 X_3 is free

э

We can express this in parametric vector form $\vec{\chi} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}^2 \begin{bmatrix} -1 + \frac{U_3}{3} & \chi_3 \\ z \\ X_3 \end{bmatrix}$ $= \begin{pmatrix} -1 \\ z \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 3 \end{pmatrix}$ $= \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$ The solutions are $\vec{\chi} = \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix} + t \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$ イロト イ団ト イヨト イヨト 二日

January 28, 2024



in red, and the vector $(\frac{4}{3}, 0, 1)$ is shown in green.

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

 $\mathbf{x} = \mathbf{p} + t\mathbf{v}$

with **p** and **v** fixed vectors and *t* a varying parameter. Also note that the t**v** part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

The vector **p** is called a **particular solution**, and $t\mathbf{v}$ is called a solution to the associated homogeneous equation.

< ロ > < 同 > < 回 > < 回 >

General Solution Nonhomogeneous Equation

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given **b**. Let **p** be a particular solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h,$$

where \mathbf{v}_h is any solution of the associated homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Remark: We can use a row reduction technique to get all parts of the solution in one process.

January 28, 2024

Example

Find the solution set of the following system. Express the solution set in parametric vector form.

$$x_{1} - 2x_{2} + x_{4} = 2$$
 be can be an

$$3x_{1} - 6x_{2} + x_{3} - x_{4} = 7$$
 augmented matrix.

$$\begin{bmatrix} 1 & -2 & 0 & 1 & 2 \\ 3 & -6 & 1 & -1 & 7 \end{bmatrix} - 3K_{1} + R_{2} \Rightarrow R_{2}$$

$$\begin{bmatrix} 1 & -2 & 0 & 1 & 2 \\ 0 & 0 & 1 & -1 & 7 \end{bmatrix}$$
 From the rest, X_{1}
and X_{3} are basic. X_{2} and
 X_{4} are tree.

$$X_1 = Z + Z \times Z - X Y$$

 $X_2 - free$

$$\begin{aligned} x_{3} &= 1 + 4 \times u \\ x_{n} &= free \\ \overrightarrow{x}_{2} &= \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} z + z \times z - X u \\ X z \\ z + 4 \times u \\ X u \end{pmatrix} = \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} z \\ 0 \\ 1 \\ 1 \end{pmatrix} , \quad s, t \in \mathbb{R} \\ \overrightarrow{x} = \begin{pmatrix} z \\ 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} z \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} , \quad s, t \in \mathbb{R} \end{aligned}$$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}.$$

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$ always exists.

Remark: The existence, or not, of a nontrivial solution is a property of the set of vectors $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.

> January 28, 2024

Definition: Linear Independence

Definition:Linear Independence

An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

If a set of vectors is not linearly independent, we say that it is **linearly** dependent.

Remark: This definition fully defines Linear Dependence. However, we could choose to define linear dependence directly.

Linear Dependence & Independence

Definition: Linear Dependence

The set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights $c_1, c_2, ..., c_p$, at least one of which is nonzero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

Remark: The phrase "*at least one of which is nonzero*" is a reference to a **nontrivial solution**.

Definition: Linear Dependence Relation

An equation $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

Theorem on Linear Independence

Theorem:

The columns of a matrix *A* are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Remark: This follows from the definition of linear independence. This connects a homogeneous system $A\mathbf{x} = \mathbf{0}$ with a property of the columns of *A* as a set of vectors.

January 28, 2024

Example

(a) Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$
, and $\mathbf{v}_2 = \begin{bmatrix} 1\\ -2 \end{bmatrix}$

Determine if the set $\{\boldsymbol{v}_1,\boldsymbol{v}_2\}$ is linearly dependent or linearly independent.

We can preate a matrix,
$$A = \begin{bmatrix} v & v_z \end{bmatrix}$$
,
and look at the homogeneous system $A\vec{x} = \vec{0}$.
Using an anymented metrix
 $\begin{bmatrix} A & \vec{0} \end{bmatrix} = \begin{bmatrix} z & I & 0 \\ Y & -z & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & I & 0 \end{bmatrix}$.
The rest shows that $A\vec{x} = \vec{0}$ has
only the trivial solution.

-

By the theorem on the last slide. the columns of A are linearly m dependent. Hence {V, , V2} is linearly in de pen dent.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Example

(b) Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Determine if the set $\{v_1, v_2, v_3\}$ is linearly dependent or linearly independent.

Note that
$$\vec{V}_1 + \vec{V}_2 = \vec{V}_3$$
. Hence
 $\vec{V}_1 + \vec{V}_2 - \vec{V}_3 = \vec{O}$. This is a
linear dependence relation
 $C_1\vec{V}_1 + C_2\vec{V}_2 + C_3\vec{V}_3 = \vec{O}$ of $C_1 = C_2 = 1$
and $C_3 = -1$

Since at last one coefficient is nonzero, the set {V1, V2, V3} is linearly dependent

Example

(c) Determine if the set of vectors is linearly dependent or linearly independent. If dependent, find a linear dependence relation.

э

ヘロト 人間 とうほう 人口 とう

Xy is free, they are lin. dependent.

4回▶ 4日▶ 4日▶ 4日▶ 日 のQで
January 28, 2024 25/33