January 29 Math 3260 sec. 52 Spring 2024

Section 1.5: Solution Sets of Linear Systems

Definition

A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.

Theorems

Theorem 1: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, $\mathbf{x}=\mathbf{0}$, called the trivial solution.

Theorem 2: The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Examples from last time:

We used an augmented matrix to identify solution sets.
(a) $\begin{gathered}2 x_{1}+x_{2}=0 \\ x_{1}-3 x_{2}=0\end{gathered} \quad$ trivial solution only $\mathbf{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(b) $\begin{aligned} 3 x_{1}+5 x_{2}-4 x_{3} & =0 \\ -3 x_{1}-2 x_{2}+4 x_{3} & =0 \\ 6 x_{1}+x_{2}-8 x_{3} & =0\end{aligned} \quad$ nontrivial solutions
$\mathbf{x}=x_{3}\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right], \quad x_{3}$ is free
(c) $x_{1}-2 x_{2}+5 x_{3}=0$ nontrivial solutions
$\mathbf{x}=x_{2}\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{r}-5 \\ 0 \\ 1\end{array}\right], \quad x_{2}, x_{3}$ are free

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x}=x_{3} \mathbf{v}$. Example (c)'s solution set consisted of vectors that look like $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$. Instead of using the variables x_{2} and/or x_{3} we often substitute parameters such as s or t.

Parametric Vector Form of a Solution Set

The forms

$$
\begin{array}{ll}
\mathbf{x}=s \mathbf{u}, \text { or } \mathbf{x}=s \mathbf{u}+t \mathbf{v} & s \in \mathbb{R} \\
\text { tric vector forms. } & , \infty<s, t<\infty
\end{array}
$$

are called parametric vector forms.

Remark: Since these are linear combinations, an alternative way to express the solution sets would be

$$
\operatorname{Span}\{\mathbf{u}\} \text { or } \operatorname{Span}\{\mathbf{u}, \mathbf{v}\} .
$$

Geometry

The parametric vector form of the solution set of the system

$$
\begin{aligned}
3 x_{1}+5 x_{2}-4 x_{3} & =0 \\
-3 x_{1}-2 x_{2}+4 x_{3} & =0 \\
6 x_{1}+x_{2}-8 x_{3} & \text { is }
\end{aligned}
$$

$$
\mathbf{x}=s\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
1
\end{array}\right], \quad s \in \mathbb{R} .
$$

This is a line in \mathbb{R}^{3} through the points $(0,0,0)$ and $\left(\frac{4}{3}, 0,1\right)$.

Geometry

Figure: Plot of the line $\mathbf{x}=s\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]$. The point $\left(\frac{4}{3}, 0,1\right)$ is shown in green.

Geometry

The parametric vector form of the solution set of $x_{1}-2 x_{2}+5 x_{3}=0$ is

$$
\mathbf{x}=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right], \quad \text { where } s, t \in \mathbb{R}
$$

This is a plane in \mathbb{R}^{3} that contains the points $(0,0,0),(2,1,0)$, and $(-5,0,1)$.

Geometry

Figure: Plot of the plane $\mathbf{x}=s\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right]$. The blue vectors are in the directions of $(2,1,0)$ and $(-5,0,1)$. (The white vector is perpendicular-a.k.a. normal-to the plane.)

Nonhomogeneous Systems
Find all solutions of the nonhomogeneous system of equations

$$
\begin{aligned}
3 x_{1}+5 x_{2}-4 x_{3} & =7 \\
-3 x_{1}-2 x_{2}+4 x_{3} & =-1 \\
6 x_{1}+x_{2}-8 x_{3} & =-4
\end{aligned} \quad \text { we can use an } \begin{aligned}
\text { aug minted matrix, } x, ~ \\
{\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

we have, two basic variables, x_{1}, x_{2}, and one free x_{3}.

$$
\begin{aligned}
& x_{1}=-1+\frac{4}{3} x_{3} \\
& x_{2}=2 \\
& x_{3} \text { is free }
\end{aligned}
$$

we con write this in panametriz vector form

$$
\begin{aligned}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{c}
-1+\frac{4}{3} x_{3} \\
2 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

The solutions are
\in lis an

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right], \quad t \in \mathbb{R}
$$

Geometry $\mathbf{x}=(-1,2,0)+t\left(\frac{4}{3}, 0,1\right)$ in \mathbb{R}^{3}

Figure: Plot of the line $\mathbf{x}=\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]$. The point $(-1,2,0)$ is shown in red, and the vector $\left(\frac{4}{3}, 0,1\right)$ is shown in green.

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t v$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

The vector \mathbf{p} is called a particular solution, and $t \mathbf{v}$ is called a solution to the associated homogeneous equation.

General Solution Nonhomogeneous Equation

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h},
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Remark: We can use a row reduction technique to get all parts of the solution in one process.

Example
Find the solution set of the following system. Express the solution set in parametric vector form.

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{4}=2 \text { we con use on } \\
& 3 x_{1}-6 x_{2}+x_{3}-x_{4}=7 \quad \text { angmanted matrix. } \\
& {\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & 2 \\
3 & -6 & 1 & -1 & 7
\end{array}\right]-3 R_{1}+R_{2} \rightarrow R_{2}} \\
& {\left[\begin{array}{rrrrr}
1 & -2 & 0 & 1 & 2 \\
0 & 0 & 1 & -4 & 1
\end{array}\right]} \\
& \text { This is an fret. } \\
& x_{1} \text { and } x_{3} \text { are basic, } x_{2} \text { and } \\
& x_{4} \text { are free. } \\
& \left.x_{1}=2+2 x_{2}-x_{4}\right\} \text { parametric } \\
& x_{2} \text { - is free } \\
& x_{3}=1+4 x_{4} \\
& \text { form of the solution. }
\end{aligned}
$$

x_{4} is fou e

$$
\begin{aligned}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] & =\left[\begin{array}{c}
2+2 x_{2}-x_{4} \\
x_{2} \\
1+4 x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-x_{4} \\
0 \\
4 x_{4} \\
x_{4}
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
4 \\
1
\end{array}\right]
\end{aligned}
$$

The solutions are

$$
\vec{x}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
4 \\
1
\end{array}\right], s, t \in \mathbb{R}
$$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A \mathbf{x}=\mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

And, we know that at least one solution (the trivial one $x_{1}=x_{2}=\cdots=x_{n}=0$) always exists.

Remark: The existence, or not, of a nontrivial solution is a property of the set of vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

Definition: Linear Independence

Definition:Linear Independence

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.

If a set of vectors is not linearly independent, we say that it is linearly dependent.

Remark: This definition fully defines Linear Dependence. However, we could choose to define linear dependence directly.

Linear Dependence \& Independence

Definition: Linear Dependence

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$, at least one of which is nonzero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Remark: The phrase "at least one of which is nonzero" is a reference to a nontrivial solution.

Definition: Linear Dependence Relation

An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Theorem on Linear Independence

Theorem:

The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Remark: This follows from the definition of linear independence. This connects a homogeneous system $\mathbf{A x}=\mathbf{0}$ with a property of the columns of A as a set of vectors.

Example
(a) Let $\quad \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \quad$ and $\quad \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$

Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent or linearly independent.
we con use a motrix, $A=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$, and look at the system $A \vec{x}=\overrightarrow{0}$.

Using on augmented matrix

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$A \vec{x}=\overrightarrow{0}$ has the trivid solution

Hence the set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is linearly independent.

