January 30 Math 2306 sec. 51 Spring 2023

Section 4: First Order Equations: Linear

General Solution of First Order Linear ODE

- Put the equation in standard form y' + P(x)y = f(x), and correctly identify the function P(x).
- Obtain the integrating factor $\mu(x) = \exp(\int P(x) dx)$.
- Multiply both sides of the equation (in standard form) by the integrating factor µ. The left hand side will always collapse into the derivative of a product

$$\frac{d}{dx}[\mu(x)y] = \mu(x)f(x).$$

Integrate both sides, and solve for y.

$$y(x) = \frac{1}{\mu(x)} \int \mu(x) f(x) \, dx = e^{-\int P(x) \, dx} \left(\int e^{\int P(x) \, dx} f(x) \, dx + C \right)$$

January 27, 2023

1/15

Steady and Transient States

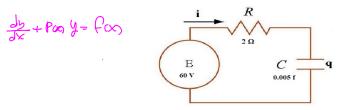


Figure: The charge q(t) on the capacitor in the given curcuit satisfies a first order linear equation.

$$2\frac{dq}{dt} + 200q = 60, \quad q(0) = 0.$$

Standard form,
$$\frac{dq}{dt} + 100q = 30$$

P(t) = 100 Build $\mu = e^{\int \rho(t_0) dt}$
January 27, 2023 2/15

p= e = 0 $e^{100t}\left(\frac{dq}{dt}+166q\right)=e^{100t}(30)$ $\frac{d}{dt}\left(\begin{array}{c}100t\\e\end{array}\right)=30e$ $\int \frac{d}{dF} \left(e^{i\omega t} g \right) dt = \int 30 e^{i\omega t} dt$ e 4 = 30 e + K Se se c $q = \frac{\frac{3}{10}e^{100t} + k}{100t}$ イロト 不得 トイヨト イヨト ニヨー January 27, 2023 3/15

$$g = \frac{3}{10} + k e^{-100t}$$

$$1 - pareneler finity of solutions$$
Now, apply $g(0) = 0$

$$g(0) = \frac{3}{10} + k e^{0} = 0 \implies k = -\frac{3}{10}$$
The solution to the IVP is
$$g(t) = \frac{3}{10} - \frac{3}{10} e^{-100t}$$

▲□▶ < @▶ < ≧▶ < ≧▶ ≤ 差 > ≧ の Q @ January 27, 2023 4/15

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q = q_p + q_c$.

$$q(t) = \frac{3}{10} - \frac{3}{10}e^{-100t}$$
$$q_c(t) = -\frac{3}{10}e^{-100t} \text{ and } q_p(t) = \frac{3}{10}$$

Evaluate the limit

$$\lim_{t\to\infty}q_c(t) = \lim_{t\to\infty} \frac{-3}{10} e^{-1/00t} = 0$$

イロト 不得 トイヨト イヨト 二日

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a **transient state**.

Note that due to this decay, after a while $q(t) \approx q_p(t)$.

Definition: Such a corresponding particular solution is called a **steady state**.

Bernoulli Equations

Suppose P(x) and f(x) are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0, 1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

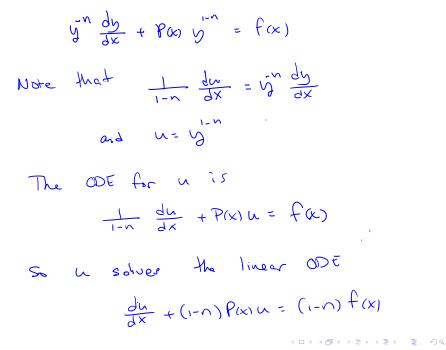
Solving the Bernoulli Equation

$$\frac{dy}{dx} + P(x)y = f(x)y^{n}$$

We'll define a new dependent variable
$$u = y^{1-n} \quad \text{Then}$$

$$\frac{du}{dx} = (1-n)y^{1-n-1}\frac{dy}{dx} \Rightarrow \frac{du}{dx} = (1-n)y^{n}\frac{dy}{dx}$$
Divide the ODE by y^{n}_{1-1}

$$\frac{y^{n}}{y^{n}}\left(\frac{dy}{dx} + P_{n-1}y\right) = y^{n}_{0}\left(f(x)y^{n}\right)$$



January 27, 2023 9/15

we can write $\frac{du}{dx} + P_i(x)u = f_i(x)$ where $P_i(x) = (i-n)P(x)$ and $f_i(x) = (i-n)f(x)$ $u = y^{i-n} \implies y = u^{i-n}$

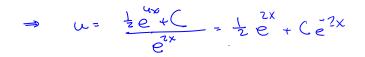
Example $\frac{dy}{dx} + P \cos y = f \cos y^2$

Solve the initial value problem $y' - y = -e^{2x}y^3$, subject to y(0) = 1.

This is Bernoulli w/ n=3, P(x)=-1 and $f(x) = -e^{2x}$ Let $u = y' = y' = y^2$. U satisfies $\frac{du}{dx} + (1-n)P(x)U = (1-n)f(x) , \quad 1-n=-2$ $\frac{du}{dv}$ + (-z) (-1) ω = (-v) (- e^{2x}) $\frac{dv}{dx}$ + 2h = 2e^{2x} $P_{1}(x) = 2$, $\mu = e^{\int P_{1}(x) dx} = e^{\int Z dx} e^{Zx} e^{Zx}$

 $\frac{d}{dx}\left(e^{2x}u\right) = e^{2x}\left(ze^{2x}\right) = 2e^{4x}$ $\int \frac{\partial}{\partial x} \left(e^{2x} \omega \right) dx = \int 2 e^{4x} dx$

 $e^{2x}u = \frac{z}{4}e^{4x} + C$



So $u = \frac{1}{2}e^{2x} + \frac{1}{2}e^{2x}$ From $u = \sqrt{2}^2 \Rightarrow \sqrt{2} = \frac{1}{\sqrt{2}}$

The solutions to the ODE are

$$S = \frac{1}{\int \frac{1}{2} e^{3x} + C e^{3x}}$$

$$\begin{array}{l} \text{Apply} \quad y(0) = 1 \\ y(0) = \sqrt{\frac{1}{2e^{0} + (e^{0})}} = 1 \\ \sqrt{\frac{1}{2e^{0} + (e^{0})}}$$

January 27, 2023 14/15

⇒ C= +

The solution to the VVP is $\sqrt{\frac{1}{2}} \frac{2}{6} \times \frac{1}{2}$ -2×

<ロ> <四> <四> <四> <四> <四</p>