January 30 Math 2306 sec. 52 Spring 2023

Section 4: First Order Equations: Linear

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x) .
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Steady and Transient States

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Figure: The charge $q(t)$ on the capacitor in the given curcuit satisfies a first order linear equation.

$$
2 \frac{d q}{d t}+200 q=60, \quad q(0)=0
$$

$$
\begin{aligned}
& \text { Standard form: } \frac{d q}{d t}+100 q=30 \\
& P(t)=100 \text {. Find } \mu=e^{\int p(t) d t}
\end{aligned}
$$

$$
\mu=e^{\int 100 d t}=e^{100 t}
$$

multiply the $O D E$ bs μ

$$
\begin{aligned}
& e^{100 t}\left(\frac{d q}{d t}+100 q\right)=e^{100 t}(30) \\
& \frac{d}{d t}\left(e^{100 t} q\right)=30 e^{100 t}
\end{aligned}
$$

Integrate $\int \frac{d}{d t}\left(e^{100 t} q\right) 1 t=\int 30 e^{100 t} d t$

$$
e^{100 t} q=\frac{30}{100} e^{100 t}+k \quad \int_{a_{0}}^{a^{x}} e^{a^{x}} e^{x} u
$$

$$
\begin{gathered}
q=\frac{\frac{3}{10} e^{100 t}+k}{e^{100 t}}=\frac{3}{10}+k e^{-100 t} \\
q(t)=\frac{3}{10}+k e^{-100 t}
\end{gathered}
$$

Apply $g_{0}(0)=0$

$$
q(0)=\frac{3}{10}+k e^{0}=0 \Rightarrow k=\frac{-3}{10}
$$

The solution to the IVP is

$$
q=\frac{3}{10}-\frac{3}{10} e^{-100 t}
$$

Steady and Transient States

Note that the solution, the charge, consists of a complementary and a particular solution, $q=q_{p}+q_{c}$.

$$
\begin{gathered}
q(t)=\frac{3}{10}-\frac{3}{10} e^{-100 t} \\
q_{c}(t)=-\frac{3}{10} e^{-100 t} \quad \text { and } \quad q_{p}(t)=\frac{3}{10}
\end{gathered}
$$

Evaluate the limit

$$
\lim _{t \rightarrow \infty} q_{c}(t)=\lim _{t \rightarrow \infty} \frac{-3}{10} e^{-100 t}=0
$$

Steady and Transient States

The complementary solution contains the information given by the initial condition, and for some physical systems like this the complementary solution decays.

Definition: Such a decaying complementary solution is called a transient state.

Note that due to this decay, after a while $q(t) \approx q_{p}(t)$.

Definition: Such a corresponding particular solution is called a steady state.

Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

weill introduce a new dependent variable called u.
set $u=y^{1-n}$. Let's find $\frac{d u}{d x}$

$$
\frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x} \Rightarrow \frac{d u}{d x}=(1-n) y^{-n} \frac{d y}{d x}
$$

Divide the ODE by y^{n} (ie. multiply by y^{-n})

$$
y^{-n}\left(\frac{d y}{d x}+p(x) y\right)=y^{-n}\left(f(x) y^{n}\right)
$$

$$
y^{-n} \frac{d y}{d x}+P(x) y^{1-n}=f(x)
$$

Note $y^{-n} \frac{d y}{d x}=\frac{1}{1-n} \frac{d u}{d x}$ and $y^{1-n}=u$

The sOF is

$$
\frac{1}{1-n} \frac{d u}{d x}+P(x) u=f(x)
$$

u satirfies the lineer ons

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

we can write

$$
\frac{d u}{d x}+P_{1}(x) u=f_{1}(x)
$$

where $P_{1}(x)=(1-n) P(x)$ and

$$
\begin{aligned}
& f_{1}(x)=(1-n) f(x) \\
& u=y^{1-n} \Rightarrow y=u^{\frac{1}{1-n}}
\end{aligned}
$$

Example $\quad \frac{d y}{d x}+P(x) y=f(x) y^{n}$
Solve the initial value problem $y^{\prime}-y=-e^{2 x} y^{3}$, subject to $y(0)=1$.
The Ode is Bernoulli with

$$
n=3, \quad P(x)=-1, \quad f(x)=-e^{2 x} .
$$

Let $u=y^{1-n}=y^{1-3}=y^{-2}$.
Note $1-n=-2$, u solves

$$
\begin{aligned}
& \frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x) \\
\Rightarrow & \frac{d u}{d x}+(-2)(-1) u=(-2)\left(-e^{2 x}\right)
\end{aligned}
$$

$$
\frac{d u}{d x}+2 u=2 e^{2 x}
$$

$1^{\text {st }}$ crde liveer $P_{1}(x)=2$,
so

$$
\begin{aligned}
& \mu=e^{\int P_{1}(x) d x}=e^{\int 2 d x}=e^{2 x} \\
& \frac{d}{d x}\left(e^{2 x} u\right)=e^{2 x}\left(2 e^{2 x}\right)=2 e^{4 x} \\
& \int \frac{d}{d x}\left(e^{2 x} u\right) d x=\int 2 e^{4 x} d x \\
& e^{2 x} u=\frac{2}{4} e^{4 x}+C \\
& u=\frac{\frac{1}{2} e^{4 x}+C}{e^{2 x}}=\frac{1}{2} e^{2 x}+C e^{-2 x}
\end{aligned}
$$

$$
u=\frac{1}{2} e^{2 x}+C e^{-2 x}
$$

Solue for y. $u=y^{-2} \Rightarrow y=u^{-1 / 2}=\frac{1}{\sqrt{u}}$

$$
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+C e^{-2 x}}}
$$

1 parameter faily of soln. to the ODE

Appl, $y(0)=1$

$$
y(0)=\frac{1}{\sqrt{\frac{1}{2} e^{0}+C e^{0}}}=1
$$

$$
\begin{aligned}
\Rightarrow \frac{1}{\sqrt{\frac{1}{2}+C}} & =1 \\
\sqrt{\frac{1}{2}+C} & =1 \\
& \frac{1}{2}+C=1^{2}=1 \Rightarrow C= \\
& \Rightarrow C=\frac{1}{2}
\end{aligned}
$$

The solution to the IVP is

$$
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}}}
$$

