January 31 Math 3260 sec. 51 Spring 2022

Section 1.4: The Matrix Equation $A \mathbf{x}=\mathbf{b}$.

For $m \times n$ matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ and vector \mathbf{x} in \mathbb{R}^{n}, we defined the product

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

So $A \mathbf{x}$ is the vector in \mathbb{R}^{m} that is the linear combination of the columns of A with the entries of \mathbf{x} as the weights.

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

We can say that $A \mathbf{x}=\mathbf{b}$ is solvable if and only if \mathbf{b} is a linear combination of the columns of A, i.e. if and only \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example

Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right] .
$$

We set this up by considering the linear system with augmented matrix $[A \mathbf{b}]$. We did row reduction to the following ref

$$
\left[\begin{array}{rrrr}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{rrrc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 0 & 0 & -2 b_{1}+b_{2}-2 b_{3}
\end{array}\right]
$$

The linear system is consistent if and only if that last column is not a pivot column. That is, the entries of \mathbf{b} must satisfy $-2 b_{1}+b_{2}-2 b_{3}=0$ for $A \mathbf{x}=\mathbf{b}$ to have a solution.

Example

So we know that the vector $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ must have entries satisfying

$$
-2 b_{1}+b_{2}-2 b_{3}=0
$$

for the following matrix equation to have a solution.

$$
\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

We can express this set (of all such vectors \mathbf{b}) in terms of a span. That is, we can characterize all such vectors as belonging to $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ for fixed vectors \mathbf{u} and \mathbf{v}.

$$
-2 b_{1}+b_{2}-2 b_{3}=0 \text { is a linear system }
$$

$$
\text { awl augmented matrix }\left[\begin{array}{llll}
-2 & 1 & -2 & 0
\end{array}\right]
$$

Tu get on ret, do $\frac{-1}{2} R_{1} \rightarrow R_{1}$

$$
\left[\begin{array}{llll}
1 & -\frac{1}{2} & 1 & 0
\end{array}\right]
$$

pivot $\Omega \quad b_{1}$ is basic, b_{2}, b_{3} ane free variables
colure
$b_{1}=\frac{1}{2} b_{2}-b_{3}, b_{2}$ and b_{3} are free variable

$$
\text { s. } \begin{aligned}
\vec{b} & =\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{2} b_{2} \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-b_{2} \\
0 \\
b_{3}
\end{array}\right] \\
& =b_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

\vec{b} is a lines combination of $\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
So $A \vec{x}=\vec{b}$ is solvable if \vec{b} is in $\operatorname{span}\left\{\left[\begin{array}{c}1 h \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

This says that \vec{b} would be on the plane in \mathbb{R}^{3}. that contains the points $(0,0,0),\left(\frac{1}{2}, 1,0\right)$ and $(-1,0,1)$.

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.
(Note that statement (d) is about the coefficient matrix A, not about an augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$.)

A Special Product

Consider two vectors $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ in \mathbb{R}^{n}. The dot product ${ }^{1}$ of \mathbf{x} and \mathbf{y} is given by

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

Note that this is a scalar.
${ }^{1}$ This is also called the scalar product or inner product.

Computing $A \mathbf{x}$
We can use a row-vector dot product rule. The $i^{\text {th }}$ entry is $A \mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of \mathbf{x}. That is, it is the dot product of the $i^{\text {th }}$ Row of A (as a vector in \mathbb{R}^{n} with the vector \mathbf{x}. For example

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 2+0 \cdot 1+(-3) \cdot(-1) \\
-2(2)+(-1)(1)+4(-1)
\end{array}\right]} \\
& \text { A is } 2 x^{3} \\
& \vec{x} \text { in } \mathbb{R}^{3} .
\end{aligned}
$$

$A \vec{x}$ is in \mathbb{R}^{2}

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
2(-3)+4 \cdot 2 \\
-1(-3)+1 \cdot 2 \\
0(3)+3 \cdot 2
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]} \\
& 3 \times 2 \quad \mathbb{R}^{2} \\
& \text { oudent } \\
& \mathbb{R}^{3} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{0} \\
0 x_{1}+1 \cdot x_{2}+0 \cdot x_{3} \\
0 \cdot x_{1}+0 x_{2}+1 \cdot x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \\
& 3 \times 3 \text { in } \mathbb{R}^{3} \\
& \text { out put } \\
& \text { in } \mathbb{R}^{3}
\end{aligned}
$$

Identity Matrix

We'll call an $n \times n$ matrix with 1 's on the diagonal and 0's everywhere else-i.e. one that looks like

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

the $n \times n$ identity matrix and denote it by I_{n}. (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^{n}

$$
I_{n} \mathbf{x}=\mathbf{x}
$$

Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is any scalar, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$, and
(b) $A(c \mathbf{u})=c A \mathbf{u}$.

Remark: These two properties are kinda a big deal. The concept of being Linear, as in Linear Algebra, is defined in terms of these two properties.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution $\mathbf{x}=\mathbf{0}$.

The solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

Theorem
The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(a)

$$
\begin{aligned}
& \begin{aligned}
2 x_{1}+x_{2} & =0 \\
x_{1}-3 x_{2} & =0
\end{aligned} \text { we con ole an ansmewted } \\
& \text { matrix. } \\
& {\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & -3 & 0
\end{array}\right]} \\
& \text { To set to an rect, } \\
& D_{0} \quad R_{1} \leftrightarrow R_{2} \\
& {\left[\begin{array}{ccc}
1 & -3 & 0 \\
2 & 1 & 0
\end{array}\right]} \\
& -2 R_{1}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 7 & 0
\end{array}\right]} \\
& \frac{1}{7} R_{2} \rightarrow R_{2}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 1 & 0
\end{array}\right] \quad 3 R_{2}+R_{1} \rightarrow R_{1}
$$

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ on pret.
$X_{1}=0 \quad$ There are no nontrivial $x_{2}=0 \quad$ solutions.

