# January 8 Math 3260 sec. 51 Spring 2024

### A Random Motivational Example

Plop plop, fizz fizz, oh what a relief it is1.

$$\underbrace{\text{NaHCO}_3}_{\text{sodium bicarbonate}} + \underbrace{\text{H}_3\text{C}_6\text{H}_5\text{O}_7}_{\text{citric acid}} \longrightarrow \underbrace{\underbrace{\text{Na}_3\text{C}_6\text{H}_5\text{O}_7}_{\text{sodium citrate}} + \underbrace{\text{H}_2\text{O}}_{\text{water}} + \underbrace{\text{CO}_2}_{\text{carbon dioxide}}.$$

This is an unbalanced chemical equation that describes effervescence of a commercial antacid medication.

**Question:** How many molecules of each substance result in a balanced equation?

1/37

<sup>&</sup>lt;sup>1</sup>Sodium bicarbonate and citric acid dissolved in water produces sodium citrate, water, and carbon dioxide.

# Motivating Example: Balancing Atoms

$$\underline{x_1}\,\text{NaHCO}_3 + \underline{x_2}\,\text{H}_3\text{C}_6\text{H}_5\text{O}_7 \longrightarrow \underline{x_3}\,\text{Na}_3\text{C}_6\text{H}_5\text{O}_7 + \underline{x_4}\,\text{H}_2\text{O} + \underline{x_5}\,\text{CO}_2$$

We can introduce a 4-tuple  $\begin{bmatrix} Na \\ H \\ C \\ O \end{bmatrix}$  and create an equation for the unknowns  $x_1, x_2, x_3, x_4$ , and  $x_5$ .

$$x_{1} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ 8 \\ 6 \\ 7 \end{bmatrix} = x_{3} \begin{bmatrix} 3 \\ 5 \\ 6 \\ 7 \end{bmatrix} + x_{4} \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} + x_{5} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

This is an example of the types of equations we want to consider.



### We'll work in a variety of settings...

Matrix eqns. 
$$\begin{bmatrix} 1 & 0 & -3 & 0 & 0 \\ 1 & 8 & -5 & -2 & 0 \\ 1 & 6 & -6 & 0 & -1 \\ 3 & 7 & -7 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

More Matrices 
$$\begin{bmatrix} 1 & 0 & -3 & 0 & 0 & 0 \\ 1 & 8 & -5 & -2 & 0 & 0 \\ 1 & 6 & -6 & 0 & -1 & 0 \\ 3 & 7 & -7 & -1 & -2 & 0 \end{bmatrix}$$

Vector eqns. 
$$x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 8 \\ 6 \\ 7 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ -5 \\ -6 \\ -7 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -2 \\ 0 \\ -1 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

#### **Questions:**

- ls there a set of numbers  $x_1, \ldots, x_5$  that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- Are there simple algorithms we can use to answer these questions?

These are some of the questions addressed by Linear Algebra. We'll also consider two main abstractions:

Vector Spaces and Linear Transformations.

# Section 1.1: Systems of Linear Equations

We begin with a linear (*algebraic*) equation in n real variables  $x_1, x_2, ..., x_n$  for some positive integer n.

#### **Definition**

A **linear equation** in the variables  $x_1, \ldots, x_n$  is one that can be written in the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b,$$

where  $a_1, \ldots, a_n$  are real (or complex) constants called the *coefficients*, and *b* is a constant.

In general, the coefficients and the right hand side *b* are known.



# Linear Equation in *n* Variables

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b.$$

Notice the main structure on the left side. The unknowns/variables  $(x_1, \ldots, x_n)$  are

- multipled by numbers (a.k.a. coefficients), and
- added together.

Other types of actions (squaring, multiplying variables, taking variable's reciprocal, etc.) aren't allowed if an equation is **linear**.

## Examples of Equations that are or are not Linear

$$2x_1 = 4x_2 - 3x_3 + 5 \quad \text{and} \quad 12 - \sqrt{3}(x+y) = 0$$
 These equations are linear.

$$2x_1 - 4x_2 + 3x_3 = 5$$

$$\sqrt{3}x + \sqrt{3}y = 12$$

Note that both can be written in the format from the definition. The only operations on the variables are (1) multiply by constants and (2) add.

# Examples of Equations that are or are not Linear

$$x_1 + 3x_3 = \frac{1}{x_2} \quad \text{and} \quad xyz = \sqrt{w}$$

These equations are NOT linear.

#### **Definition**

A **linear system** (or linear system of equations) is a collection of linear equations in the same variables.

The equations in a linear system are considered together as one *object*.

Example 1 is a linear system that has two equations in four variables.

Example 2 is a linear system that has three equations in three variables.

In this course, we'll mostly use a single variable name with subscripts, i.e.,  $x_1, x_2, x_3$  as opposed to x, y, z.

## Some Preliminary Terms

Consider the system of m equations in the variables  $x_1, \ldots, x_n$ 

#### **Definitions: Solution and Solution Set**

A **solution** of (1) is an ordered list of numbers  $(s_1, s_2, ..., s_n)$  that reduce each equation in the system to a true statement upon substitution<sup>a</sup>.

The **solutions set** of (1) is the set of all possible solutions.

<sup>&</sup>lt;sup>a</sup>It is assumed that substitution means setting  $x_1 = s_1$ ,  $x_2 = s_2$  and so forth.



## Some Preliminary Terms

Consider the system of m equations in the variables  $x_1, \ldots, x_n$ 

### **Definition: Equivalent Systems**

Two linear systems are called **equivalent** (or equivalent systems) if they have the same solution set.

**Remark:** We'll often use some process to rewrite a system in terms of an equivalent system for which the solution(s) is more obvious.



## An Example

$$\begin{array}{rcl}
2x_1 & - & x_2 & = & -1 \\
-4x_1 & + & 2x_2 & = & 2
\end{array}$$

(a) Show that (1,3) is a solution.

Set 
$$x_1 = 1$$
 and  $x_2 = 3$   
 $2(1) - (3) \stackrel{?}{=} -1$   
 $2 - 3 = 1$   
 $-4(1) + 2(3) \stackrel{?}{=} 2$   
 $-4 + 6 = 2$  true

January 3, 2024 12/37

# An Example Continued

$$\begin{array}{rcl}
2x_1 & - & x_2 & = & -1 \\
-4x_1 & + & 2x_2 & = & 2
\end{array}$$

(b) The solution set for this system is

$$\left\{ (x_1, x_2) \, | \, x_1 = -\frac{1}{2} + \frac{1}{2} x_2 \right\}.$$

Notice that setting  $x_1 = -\frac{1}{2} + \frac{1}{2}x_2$  in each equation we get the pair of true statements

$$2\left(-\frac{1}{2} + \frac{1}{2}x_2\right) - x_2 = -1,$$
 and  $-4\left(-\frac{1}{2} + \frac{1}{2}x_2\right) + 2x_2 = 2.$ 



# The Geometry of 2 Equations with 2 Variables



### **Theorem**

#### **Theorem**

For a linear system, exactly one of the following holds. The system has

- i no solution, or
- ii exactly one solution, or
- iii infinitely many solutions.

A system is called **inconsistent** if it does not have any solutions (case i), and it's called **consistent** if it has any solution(s) (cases ii & iii).

Note: This theorem speaks to those two big questions:

- ► Existence: Is there a solution/does a solution exist?
- Uniqueness: Is there a unique solution or multiple solutions?