January 8 Math 3260 sec. 51 Spring 2024

A Random Motivational Example

Plop plop, fizz fizz, oh what a relief it is ${ }^{1}$.

This is an unbalanced chemical equation that describes effervescence of a commercial antacid medication.

Question: How many molecules of each substance result in a balanced equation?

[^0]
Motivating Example: Balancing Atoms

$$
\underline{x_{1}} \mathrm{NaHCO}_{3}+\underline{x_{2}} \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \longrightarrow \underline{x_{3}} \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}+\underline{x_{4}} \mathrm{H}_{2} \mathrm{O}+\underline{x_{5}} \mathrm{CO}_{2}
$$

We can introduce a 4-tuple $\left[\begin{array}{c}\mathrm{Na} \\ \mathrm{H} \\ \mathrm{C} \\ \mathrm{O}\end{array}\right]$ and create an equation for the unknowns $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}.

$$
x_{1}\left[\begin{array}{l}
1 \\
1 \\
1 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
8 \\
6 \\
7
\end{array}\right]=x_{3}\left[\begin{array}{l}
3 \\
5 \\
6 \\
7
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]+x_{5}\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]
$$

This is an example of the types of equations we want to consider.

We'll work in a variety of settings...

Matrix eqns. $\left[\begin{array}{rrrrr}1 & 0 & -3 & 0 & 0 \\ 1 & 8 & -5 & -2 & 0 \\ 1 & 6 & -6 & 0 & -1 \\ 3 & 7 & -7 & -1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

$$
\text { More Matrices }\left[\begin{array}{rrrrrr}
1 & 0 & -3 & 0 & 0 & 0 \\
1 & 8 & -5 & -2 & 0 & 0 \\
1 & 6 & -6 & 0 & -1 & 0 \\
3 & 7 & -7 & -1 & -2 & 0
\end{array}\right]
$$

Vector eqns. $\quad x_{1}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 8 \\ 6 \\ 7\end{array}\right]+x_{3}\left[\begin{array}{l}-3 \\ -5 \\ -6 \\ -7\end{array}\right]+x_{4}\left[\begin{array}{r}0 \\ -2 \\ 0 \\ -1\end{array}\right]+x_{5}\left[\begin{array}{r}0 \\ 0 \\ -1 \\ -2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Questions:

- Is there a set of numbers x_{1}, \ldots, x_{5} that satisfy all of the equations?
- If there is a set of numbers, is it the only one?
- Are there simple algorithms we can use to answer these questions?

These are some of the questions addressed by Linear Algebra. We'll also consider two main abstractions:

Vector Spaces and Linear Transformations.

Section 1.1: Systems of Linear Equations

We begin with a linear (algebraic) equation in n real variables x_{1}, x_{2}, ..., x_{n} for some positive integer n.

Definition

A linear equation in the variables x_{1}, \ldots, x_{n} is one that can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b,
$$

where a_{1}, \ldots, a_{n} are real (or complex) constants called the coefficients, and b is a constant.

In general, the coefficients and the right hand side b are known.

Linear Equation in n Variables

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b .
$$

Notice the main structure on the left side. The unknowns/variables $\left(x_{1}, \ldots, x_{n}\right)$ are

- multipled by numbers (a.k.a. coefficients), and
- added together.

Other types of actions (squaring, multiplying variables, taking variable's reciprocal, etc.) aren't allowed if an equation is linear.

Examples of Equations that are or are not Linear

$$
2 x_{1}=4 x_{2}-3 x_{3}+5 \quad \text { and } \quad 12-\sqrt{3}(x+y)=0
$$

These equations are linear.

$$
2 x_{1}-4 x_{2}+3 x_{3}=5
$$

$$
\sqrt{3} x+\sqrt{3} y=12
$$

Note that both can be written in the format from the definition. The only operations on the variables are (1) multiply by constants and (2) add.

Examples of Equations that are or are not Linear

$$
x_{1}+3 x_{3}=\frac{1}{x_{2}} \quad \text { and } \quad x y z=\sqrt{w}
$$

These equations are NOT linear.
Reciprocals are mot line or
The product $x y z$ is non linear as is $\sqrt{\omega}$.

Definition

A linear system (or linear system of equations) is a collection of linear equations in the same variables.

The equations in a linear system are considered together as one object.

Example 1: $\begin{aligned} & 2 x_{1}+x_{2}-3 x_{3}+x_{4}=-3 \\ & -x_{1}+3 x_{2}+4 x_{3}-2 x_{4}=8\end{aligned}$
Example 1 is a linear system that has two equations in four variables.

Example 2 is a linear system that has three equations in three variables.
In this course, we'll mostly use a single variable name with subscripts, i.e., x_{1}, x_{2}, x_{3} as opposed to x, y, z.

Some Preliminary Terms

Consider the system of m equations in the variables x_{1}, \ldots, x_{n}

$$
\begin{array}{rllllll}
a_{11} x_{1} & +a_{12} x_{2} & + & \cdots & + & a_{1 n} x_{n} & = \\
a_{21} x_{1} & +a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = \tag{1}\\
& \vdots & & \vdots & & \vdots & \\
b_{2} \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & + & \cdots & + & & \vdots \\
a_{m n} x_{n} & = & b_{m}
\end{array}
$$

Definitions: Solution and Solution Set

A solution of (1) is an ordered list of numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ that reduce each equation in the system to a true statement upon substitution ${ }^{a}$.

The solutions set of (1) is the set of all possible solutions.

[^1]
Some Preliminary Terms

Consider the system of m equations in the variables x_{1}, \ldots, x_{n}

$$
\begin{array}{rlllllll}
a_{11} x_{1} & +a_{12} x_{2} & + & \cdots & + & a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = & b_{2} \\
& \vdots & & \vdots & \ldots & \vdots & & \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & + & \cdots & + & a_{m n} x_{n} & = & b_{m}
\end{array}
$$

Definition: Equivalent Systems

Two linear systems are called equivalent (or equivalent systems) if they have the same solution set.

Remark: We'll often use some process to rewrite a system in terms of an equivalent system for which the solution(s) is more obvious.

An Example

$$
\begin{aligned}
2 x_{1}-x_{2} & =-1 \\
-4 x_{1}+2 x_{2} & =2
\end{aligned}
$$

(a) Show that $(1,3)$ is a solution.
set $x_{1}=1$ and $x_{2}=3$

$$
\begin{aligned}
& 2(1)-(3) \stackrel{?}{=}-1 \\
& 2-3=1 \quad \text { it's true } \\
&-4(1)+2(3) \stackrel{?}{=} 2 \\
&-4+6=2 \quad \text { it's also } \\
& \text { true. }
\end{aligned}
$$

An Example Continued

$$
\begin{gathered}
2 x_{1}-x_{2}=-1 \\
-4 x_{1}+2 x_{2}=2
\end{gathered}
$$

(b) The solution set for this system is

$$
\left\{\left(x_{1}, x_{2}\right) \left\lvert\, x_{1}=-\frac{1}{2}+\frac{1}{2} x_{2}\right.\right\} .
$$

Notice that setting $x_{1}=-\frac{1}{2}+\frac{1}{2} x_{2}$ in each equation we get the pair of true statements

$$
\begin{aligned}
2\left(-\frac{1}{2}+\frac{1}{2} x_{2}\right)-x_{2} & =-1, \\
-4\left(-\frac{1}{2}+\frac{1}{2} x_{2}\right) & +2 x_{2}
\end{aligned} \quad \text { and }
$$

The Geometry of 2 Equations with 2 Variables

	Graphical Illustration of Solution Cases (a) $x-y=-1 \quad$ One solution case. $2 x+y=3 \quad$ Intersecting lines (b) $x-y=-1$ Infinitely many solutions. $2 x-2 y=-2 \quad$ One line (c) $x-y=-1$ No solutions case. $2 x-2 y=2 \quad$ Parallel lines

Theorem

Theorem

For a linear system, exactly one of the following holds. The system has
i no solution, or
ii exactly one solution, or
iii infinitely many solutions.

A system is called inconsistent if it does not have any solutions (case i), and it's called consistent if it has any solution(s) (cases ii \& iii).

Note: This theorem speaks to those two big questions:

- Existence: Is there a solution/does a solution exist?
- Uniqueness: Is there a unique solution or multiple solutions?

[^0]: ${ }^{1}$ Sodium bicarbonate and citric acid dissolved in water produces sodium citrate, water, and carbon dioxide.

[^1]:

