July 12 Math 2306 sec. 53 Summer 2022

Section 12: LRC Series Circuits

Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t)$.

This is a second order, linear, constant coefficient nonhomogeneous (if $E \neq 0$) equation.

LRC Series Circuit (Free Electrical Vibrations)

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=0
$$

If the applied force $E(t)=0$, then the electrical vibrations of the circuit are said to be free. These are categorized as
overdamped if
critically damped if
underdamped if

$$
R^{2}-4 L / C>0, \quad(2 \text { real roots })
$$

$$
R^{2}-4 L / C=0
$$

$$
R^{2}-4 L / C<0 . \text { (complex roots) }
$$

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0}
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t)
$$

The function of q_{c} is influenced by the initial state (q_{0} and i_{0}) and will decay exponentially as $t \rightarrow \infty$. Hence q_{c} is called the transient state charge of the system.

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0} .
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t) .
$$

The function q_{p} is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_{p} is called the steady state charge of the system.

Example

An LRC series circuit has inductance 0.5 h , resistance 10 ohms, and capacitance $4 \cdot 10^{-3} \mathrm{f}$. Find the steady state current of the system if the applied force is $E(t)=5 \cos (10 t)$.

The ODE for the charge is
$0.5 q^{\prime \prime}+10 q^{\prime}+\frac{1}{4 \cdot 10^{-3}} q=5 \cos (10 t) \Longrightarrow q^{\prime \prime}+20 q^{\prime}+500 q=10 \cos (10 t)$.
The characteristic equation $r^{2}+20 r+500=0$ has roots
$r=-10 \pm 20 i$. To determine q_{p} we can assume

$$
q_{p}=A \cos (10 t)+B \sin (10 t)
$$

which does not duplicate solutions of the homogeneous equation (such duplication would only occur if the roots above were $r= \pm 10 i$).

Example Continued...

Working through the details, we find that $A=1 / 50$ and $B=1 / 100$. The steady state charge is therefore

$$
q_{p}=\frac{1}{50} \cos (10 t)+\frac{1}{100} \sin (10 t)
$$

The steady state current

$$
i_{p}=\frac{d q_{p}}{d t}=-\frac{1}{5} \sin (10 t)+\frac{1}{10} \cos (10 t)
$$

Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables (s and t) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say t,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable s, and
- the variable s is treated as a constant while integrating with respect to t.

For Example...

Assume that $s \neq 0$ and $b>0$. Compute the integral

$$
\begin{aligned}
\int_{0}^{b} e^{-s t} d t & =\left.\frac{1}{-s} e^{-s t}\right|_{0} ^{b} \\
& =-\frac{1}{s} e^{-b s}+\frac{1}{s} e^{0} \\
& =\frac{1}{s}\left(1-e^{-b s}\right)
\end{aligned}
$$

This is a function of the variable s.

Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.

Limits at Infinity $e^{-s t}$

If $s>0$, evaluate
$\lim _{t \rightarrow \infty} e^{-s t}=0$

If $s>0$, then $-s t \rightarrow-\infty$ as $t \rightarrow \infty$.
If $s<0$, evaluate
$\lim _{t \rightarrow \infty} e^{-s t}=\infty$

If $s<0$, then $-s t \rightarrow \infty$ as $t \rightarrow \infty$.

Find the Laplace transform of $f(t)=1$

It is readily seen that if $s=0$, the integral $\int_{0}^{\infty} e^{-s t} d t$ is divergent. Otherwise ${ }^{1}$

$$
\mathscr{L}\{1\}=\int_{0}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}
$$

Convergence in the limit $t \rightarrow \infty$ requires $s>0$. In this case, we have

$$
\mathscr{L}\{1\}=-\frac{1}{s}(0-1)=\frac{1}{s} .
$$

So we have the transform along with its domain

$$
\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0 .
$$

[^0]Find the Laplace transform of $f(t)=t$
Using the definition $\mathscr{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t$. lt's again easy to see that the integral diverges if $s=0$. Otherwise, we can integrate by parts

$$
\int_{0}^{\infty} e^{-s t} t d t=-\left.\frac{1}{s} t e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{1}{s} e^{-s t} d t
$$

For $s>0, \lim _{t \rightarrow \infty} t e^{-s t}=0$. So with the condition that $s>0$

$$
\mathscr{L}\{t\}=0+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t=\frac{1}{s} \mathscr{L}\{1\}=\frac{1}{s^{2}}
$$

So we have the transform along with its domain

$$
\mathscr{L}\{t\}=\frac{1}{s^{2}}, \quad s>0
$$

A piecewise defined function

Find the Laplace transform of f defined by

$$
\begin{aligned}
f(t)= & \begin{cases}2 t, & 0 \leq t<10 \\
0, & t \geq 10\end{cases} \\
& \mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{10} 2 t e^{-s t} d t+\int_{10}^{\infty} 0 \cdot e^{-s t} d t
\end{aligned}
$$

For $s \neq 0$, integration by parts gives

$$
\mathscr{L}\{f(t)\}=\frac{2}{s^{2}}-\frac{2 e^{-10 s}}{s^{2}}-\frac{20 e^{-10 s}}{s} .
$$

When $s=0$, the value $\left.\mathscr{L}\{f(t)\}\right|_{s=10}=100$.
So we have the transform along with its domain

$$
\mathscr{L}\{f(t)\}= \begin{cases}\frac{2}{s^{2}}-\frac{2 e^{-10 s}}{s^{2}}-\frac{20 e^{-10 s}}{s}, & s \neq 0 \\ 100, & s=0\end{cases}
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
$-\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if

(a) $f(t)=\cos (\pi t)$

$$
\begin{gathered}
\text { Use } \mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0 \\
\mathscr{L}\{\cos \pi t\}=\frac{s}{s^{2}+\pi^{2}}
\end{gathered}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if

(b) $f(t)=2 t^{4}-e^{-5 t}+3$

$$
\begin{aligned}
\mathscr{L}\left\{2 t^{4}-e^{-5 t}+3\right\} & =2 \mathscr{L}\left\{t^{4}\right\}-\mathscr{L}\left\{e^{-5 t}\right\}+3 \mathscr{L}\{1\} \\
& =2 \frac{4!}{s^{4+1}}-\frac{1}{s-(-5)}+3 \frac{1}{s} \\
& =\frac{48}{s^{5}}-\frac{1}{s+5}+\frac{3}{s}
\end{aligned}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if

(c) $f(t)=(2-t)^{2}$

$$
\begin{gathered}
\mathscr{L}\{f(t)\}=\mathscr{L}\left\{4-4 t+t^{2}\right\}=4 \mathscr{L}\{1\}-4 \mathscr{L}\{t\}+\mathscr{L}\left\{t^{2}\right\} \\
=\frac{4}{s}-\frac{4}{s^{2}}+\frac{2}{s^{3}}
\end{gathered}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \quad \Longrightarrow \quad|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

[^0]: ${ }^{1}$ The integral is improper. We are in reality evaluating an integral of the form $\int_{0}^{b} e^{-s t} f(t) d t$ and then taking the limit $b \rightarrow \infty$. We suppress some of the notation here with the understanding that this process is implied.

