July 19 Math 2306 sec. 53 Summer 2022

Section 15: Shift Theorems

We added two shift theorems to our catalog of Laplace transform results.

Theorem (translation in s): Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

In other words, if $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

The Unit Step Function

Then we defined the unit step function $\mathscr{U}(t-a)$ for $a>0$ by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Theorem (translation in t): If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In other words,

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) .
$$

Yet another useful statement of this theorem is

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}
$$

Example

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}
$$

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathscr{L}\{\cos (t+\pi / 2)\}$

Note

$$
\begin{aligned}
\cos (t+\pi / 2) & =\cos t \cos \pi / 2-\sin t \sin \pi / 2 \\
& =\cos t(0)-\sin t(1) \\
& =-\sin t
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathscr{L}\{\cos t u(t-\pi / 2)\} & =e^{-\frac{\pi}{2} s} \mathscr{L}\{-\sin t\} \\
& =-e^{-\frac{\pi}{2} s} \mathscr{L}\{\sin t\} \\
& =-e^{-\frac{\pi}{2} s}\left(\frac{1}{s^{2}+1}\right) \\
& =\frac{-e^{-\pi / 2 s}}{s^{2}+1}
\end{aligned}
$$

Example

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)
$$

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$
we need to know $f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$
Partied fraction

$$
\frac{1}{s(s+1)}=\frac{A}{S}+\frac{B}{s+1} \Longrightarrow 1=A(s+1)+B s
$$

$$
\begin{gathered}
s=0 \Rightarrow A=1 \\
s=-1 \Rightarrow B=-1 \\
f(t)=\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\}=1-e^{-t} \\
\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\left(1-e^{-(t-2)}\right) U(t-2) \\
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)
\end{gathered}
$$

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose f has a Laplace transform ${ }^{1}$ and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$ using integration by parts to get

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =-f(0)+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =s F(s)-f(0) .
\end{aligned}
$$

${ }^{1}$ Assume f is of exponential order c for some c.

Transforms of Derivatives

If $\mathscr{L}\{f(t)\}=F(s)$, we have $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of f.

For example

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s),
$$

then

$$
\begin{aligned}
\mathscr{L}\left\{\frac{d y}{d t}\right\} & =s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0), \\
\vdots & \vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\} & =s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0) .
\end{aligned}
$$

Laplace Transforms and IVPs
For constants a, b, and c, take the Laplace transform of both sides of the equation and isolate $\mathscr{L}\{y(t)\}=Y(s)$.

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let $G(s)=\mathscr{L}\{g(t)\}$. Take \mathcal{L} of ODE

$$
\begin{aligned}
& \quad \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathcal{L}\{g(t)\} \\
& a \mathcal{L}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathcal{L}\{y\}=G(s) \\
& a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s)
\end{aligned}
$$

Isolate $Y(s)$ using algebra

$$
\begin{aligned}
& a s^{2} Y-a s y(0)-a y^{\prime}(0)+b s Y-b y(0)+c Y=G \\
& a s^{2} Y-a y_{0} s-a y_{1}+b s Y-b y_{0}+c Y=G \\
& \left(a s^{2}+b s+c\right) Y-a y_{0} s-a y_{1}-b y_{0}=G \\
& \left(a s^{2}+b s+c\right) Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
& \text {, } a y^{\prime \prime}+b y^{\prime}+c y=g(t),
\end{aligned}
$$

$$
\Psi(s)=\frac{a y_{0} s+a y_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
$$

The solution to the IVP

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

Solve the IVP using the Laplace Transform

$$
\frac{d y}{d t}+3 y=2 t, \quad y(0)=2
$$

Let $\Psi(s)=\mathscr{L}\{y(t)\}$.

$$
\begin{aligned}
& \mathscr{L}\left\{y^{\prime}+3 y\right\}=\mathscr{L}\{2 t\} \\
& \mathscr{L}\left\{y^{\prime}\right\}+3 \mathscr{L}\{y\}=2 \mathscr{L}\{t\} \\
& s Y(s)-y(0)+3 Y(s)=\frac{2}{s^{2}} \\
& (s+3) Y(s)-2=\frac{2}{s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
(s+3) Y(s) & =\frac{2}{s^{2}}+2 \\
Y(s) & =\frac{2}{s^{2}(s+3)}+\frac{2}{s+3}
\end{aligned}
$$

Decompose the list term

$$
\begin{aligned}
& \frac{2}{s^{2}(s+3)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+3} \\
& 2=A s(s+3)+B(s+3)+C s^{2} \\
& 2=(A+C) s^{2}+(3 A+B) s+3 B \\
& A+C=0, \quad 3 A+B=0, \quad 3 B=2
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{2}{3}, A=\frac{-1}{3} B=\frac{-2}{9} \quad C=-A=\frac{2}{9} \\
& \Psi(s)=\frac{-2 / 9}{s}+\frac{2 / 3}{s^{2}}+\frac{2 / 9}{s+3}+\frac{2}{s+3} \\
& Y(s)=\frac{-2 / 9}{s}+\frac{2 / 3}{s^{2}}+\frac{20 / 9}{s+3}
\end{aligned}
$$

The solution to the IVP

$$
\begin{aligned}
& y(t)=\frac{-2}{9} \mathscr{L}^{-1}\left\{\frac{1}{5}\right\}+\frac{2}{3} \mathscr{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\frac{20}{9} \mathscr{L}^{-1}\left\{\frac{1}{5+3}\right\} \\
& y(t)=\frac{-2}{9}+\frac{2}{3} t+\frac{20}{9} e^{-3 t}
\end{aligned}
$$

Solve the IVP

An LR-series circuit has inductance $L=1$ h, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

$$
L \frac{d i}{d t}+R i=E
$$

LR Circuit Example

$$
\begin{aligned}
& E(t)=0-O u(t-1)+E_{0} u(t-1)-E_{0} u(t-3)+0 u(t-3) \\
& \quad L=1, \quad R=10 \\
& \frac{d i}{d t}+10 i=E_{0} u(t-1)-E u(t-3), i(0)=0 \\
& \text { Let } I(s)=\mathscr{L}\{i(t)\} \\
& \mathscr{L}\left\{i^{\prime}+10 i\right\}=\mathscr{L}\left\{E_{0} u(t-1)-E_{0} u(t-3)\right\} \\
& \mathscr{L}\left\{i^{\prime}\right\}+10 \mathscr{L}\{i\}=E_{0} \mathscr{L}\{u(t-1)\}-E_{0} \mathscr{L}\{u(t-3)\}
\end{aligned}
$$

$$
\begin{gathered}
s I(s)-i(0)+10 I(s)=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
(s+10) I(s)=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
I(s)=E_{0} \frac{e^{-s}}{s(s+16)}-E_{0} \frac{e^{-3 s}}{s(s+16)} \\
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)
\end{gathered}
$$

we need $f(t)=\mathscr{L}^{-1}\left\{\frac{1}{s(s+10)}\right\}$
Using partial fractions

$$
\begin{gathered}
\frac{1}{s(s+10)}=\frac{\frac{1}{10}}{s}-\frac{\frac{1}{10}}{s+10} \\
f(t)=\mathscr{L}^{-1}\left\{\frac{1}{10}-\frac{\frac{1}{10}}{s+10}\right\}=\frac{1}{10}-\frac{1}{10} e^{-10 t} \\
f(t)=\frac{1}{10}-\frac{1}{10} e^{-10 t} \\
I(s)=E_{0} \frac{e^{-s}}{s(s+10)}-E_{0} \frac{e^{-3 s}}{s(s+10)} \\
I(s)=\frac{E_{0}}{10} e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)-\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right) \\
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)
\end{gathered}
$$

$$
i(t)=\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right) u(t-1)-\frac{E_{0}}{10}\left(1-e^{-10(t-3)}\right) u(t-3)
$$

This is the current in the
circuit. we can write this as

$$
\begin{aligned}
& i(t)= \begin{cases}0 & , 0 \leq t<1 \\
\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right), & 1 \leq t<3 \\
\frac{E_{0}}{10}\left(e^{-10(t-3)}-e^{-10(t-1)}\right), & 3 \leq t\end{cases} \\
& 0 \leq t<1 \quad 1 \leq t<3 \quad t \geq 3 \\
& u(t-1)=0 \\
& u(t-1)=1 \\
& u(t-1)=1 \\
& u(t-3)=0 \\
& u(t-3)=0 \\
& u(t-3)=1
\end{aligned}
$$

