July 21 Math 2306 sec. 53 Summer 2022

Section 16: Laplace Transforms of Derivatives and IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

Impulse
A 32 lb object is attached to a spring with spring constant $25 \mathrm{lb} / \mathrm{ft}$. A dashpot induces 8 lb per $\mathrm{ft} / \mathrm{sec}$ of velocity. The object is at rest at equilibrium. When $t=t_{0}$, a unit impulse force $f(t)=\delta\left(t-t_{0}\right)$ is applied. Use the fact that $\mathscr{L}\{\delta(t-a)\}=e^{-a s}$ for any constant $a \geq 0$ to determine the displacement $x(t)$.

$$
\begin{gathered}
m x^{\prime \prime}+\beta x^{\prime}+k x=f(t) \\
\text { weight } w=32 l b=m g=m\left(32 \mathrm{ft} / \mathrm{sec}^{2}\right) \\
\Rightarrow m=1 \text { slug g } \\
x^{\prime \prime}+8 x^{\prime}+25 x=\delta\left(t-t_{0}\right) \quad x(0)=x^{\prime}(0)=0 \\
r^{2}+8 r+25
\end{gathered}
$$

$$
\begin{aligned}
& \mathscr{L}\left\{x^{\prime \prime}+8 x^{\prime}+25 x\right\}=\mathscr{L}\left(\delta\left(t-t_{0}\right)\right) \\
& \mathscr{L}\left\{x^{\prime \prime}\right\}+8 \mathscr{L}\left\{x^{\prime}\right\}+25 \mathscr{L}\{x\}=e^{-t_{0} s}
\end{aligned}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$

$$
\begin{gathered}
s^{2} X(s)-s x_{0}^{\prime \prime}-x_{0}^{\prime}(0)+8\left(s X_{(s)}-x_{0 \prime}^{\prime \prime}\right)+2 s X(s)=e^{-t_{0} s} \\
\left(s^{2}+8 s+25\right) X(s)=e^{-t_{0} s} \\
\Longrightarrow X(s)=\frac{e^{-t_{0} s}}{s^{2}+8 s+25}
\end{gathered}
$$

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)
$$

we need $f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+8 s+25}\right\}$
$s^{2}+8 s+25$ is irreducible \Rightarrow complete the square

$$
\begin{aligned}
& s^{2}+8 s+16+2 s-16=(s+4)^{2}+9 \\
& \mathcal{L}^{-1}\left\{\frac{1}{(s+4)^{2}+9}\right\}=e^{-4 t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+3^{2}}\right\} \\
& \downarrow \\
& \frac{1}{s^{2}+3^{2}} \omega \left\lvert\, s \rightarrow s+4=\frac{1}{3} e^{-4 t} \mathscr{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\}\right.
\end{aligned}
$$

$$
\begin{gathered}
f(t)=\frac{1}{3} e^{-4 t} \sin (3 t) \\
X(s)=\frac{e^{-t_{0} s}}{s^{2}+8 s+25} \\
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a) \\
x(t)=\mathscr{L}^{-1}\{X(s)\} \quad \text { The dis placomot } \\
x(t)=\frac{1}{3} e^{-4\left(t-t_{0}\right)} \sin \left(3\left(t-t_{0}\right)\right) u\left(t-t_{0}\right)
\end{gathered}
$$

Solving a System

We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

- linear,
- having initial conditions at $t=0$, and
- constant coefficient.

Let's see it in action (i.e. with a couple of examples).

Example
Solve the system of equations

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathscr{L}\{y(t)\}$

$$
\begin{aligned}
& \mathscr{L}\left\{x^{\prime}\right\}=\mathcal{L}\{-2 x-2 y+60\} \\
& \mathscr{L}\left\{y^{\prime}\right\}=\mathcal{L}\{-2 x-5 y+60\}
\end{aligned}
$$

$$
\begin{aligned}
& s X(s)-X(0)=-2 X(s)-2 Y(s)+\mathcal{L}\{60\}^{t} 60 / s \\
& 0^{\prime} \\
& s Y(s)-y(0)=-2 X(s)-5 Y(s)+\frac{60}{s} \\
& s X+2 X+2 Y=\frac{60}{s} \quad(s+2) X+2 Y=\frac{60}{5} \\
& s Y+2 X+5 Y=\frac{60}{5} \quad 2 X+(s+5) Y=\frac{60}{5} \\
& s+\left[\begin{array}{cc}
s+2 & 2 \\
2 & s+5
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
60 / s \\
60 / s
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
s+2 & 2 \\
2 & s+5
\end{array}\right], A_{X}=\left[\begin{array}{cc}
60 / s & 2 \\
60 / s & s+5
\end{array}\right], A_{Y}=\left[\begin{array}{cc}
s+2 & 60 / s \\
2 & 60 / s
\end{array}\right] \\
& \operatorname{det}(A)=(s+2)(s+5)-2 \cdot 2 \\
&=s^{2}+7 s+10-4 \\
&=s^{2}+7 \cdot s+6=(s+1)(s+6) \\
& \operatorname{det}\left(A_{x}\right)=\frac{60}{s}(s+5)-\frac{60}{s}(2)=60+\frac{60}{5}(5-2) \\
&=60+\frac{60}{s} \cdot 3 \\
& \operatorname{de}\left(A_{\varphi}\right)=(s+2) \frac{60}{s}-2 \cdot \frac{60}{s}=60+\frac{60}{5}(2-2)
\end{aligned}
$$

$$
\begin{aligned}
& X(s)=\frac{\operatorname{det}\left(A_{x}\right)}{\operatorname{det}(A)}=\frac{60\left(1+\frac{3}{s}\right)}{(s+1)(s+6)}=\frac{60(s+3)}{s(s+1)(s+6)} \\
& Y(s)=\frac{\operatorname{det}\left(A_{y}\right)}{\operatorname{dt}(A)}=\frac{60}{(s+1)(s+6)}
\end{aligned}
$$

we need to do particl foraction decomps.

$$
\begin{aligned}
& X(s)=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+6}=\frac{30}{s}-\frac{24}{s+1}-\frac{6}{s+6} \\
& Y(s)=\frac{D}{s+1}+\frac{E}{s+6}=\frac{12}{s+1}-\frac{12}{s+6}
\end{aligned}
$$

Finally

$$
\begin{aligned}
x(t) & =\mathcal{L}^{-1}\{X(s)\} \\
& =\mathscr{L}^{-1}\left\{\frac{30}{s}-\frac{24}{s+1}-\frac{6}{s+6}\right\} \\
y(t) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{12}{s+1}-\frac{12}{s+6}\right\} \\
x(t) & =30-24 e^{-t}-6 e^{-6 t} \\
y(t) & =12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

