July 5 Math 2306 sec. 53 Summer 2022

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} .
$$

The method of undetermined coefficients is not applicable to either of these.

- The first equation has constant coefficient left side, but the tangent is not the right kind of right hand side.
- The second equation has an exponential right side, but the left side isn't constant coefficient.

We need another approach.

Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}
$$

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set

$$
\begin{aligned}
& y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}
\end{aligned}
$$

Let's assume $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$

$$
\begin{aligned}
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
& y_{p}^{\prime \prime}=u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}
\end{aligned}
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

$$
\begin{array}{r}
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q(x) y_{p}=g(x) \\
u_{1} y_{1}^{\prime \prime}+\underline{u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+p(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)}=g(x)
\end{array}
$$

Colkect $u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}$

$$
\begin{array}{r}
\underbrace{\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right) u_{1}+\left(y_{2}^{\prime \prime}+P\left(x \mid y_{2}^{\prime}+Q(x) y_{2}\right) u_{2}+\right.}_{0} \\
+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{array}
$$

2nd equat．on

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
$$

We have two equations for u_{1} and u_{2}

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

well solve using Cramer's rube.
In matrix format, the system is

$$
\begin{aligned}
& {\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
g
\end{array}\right]} \\
& \text { Let } w_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|, w_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& u_{1}^{\prime}=\frac{-g y_{2}}{w}, u_{2}^{\prime}=\frac{y_{1} g}{w} \\
& u_{1}=\int \frac{-g y_{2}}{w} d x \text { and } u_{2}=\int \frac{g y_{1}}{w} d x
\end{aligned}
$$

Then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.
Find y_{c} : $y^{\prime \prime}+y=0$
Characteristic eq $\quad m^{2}+1=0 \Rightarrow m= \pm i$

$$
\alpha=0, \beta=1
$$

$$
y_{1}=\cos x, y_{2}=\sin x
$$

Compute the wronskian:

$$
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
$$

The equation is y_{n} standard form, $g(x)=\tan x$
we have, $y_{1}=\cos x, y_{2}=\sin x, g(x)=\tan x$

$$
w=1
$$

Set $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ where

$$
\begin{aligned}
& u_{1}=\int \frac{-g y_{2}}{w} d x=\int-\frac{\tan x \sin x}{1} d x \\
&=\int(\cos x-\sec x) d x=\sin x-\ln |\sec x+\tan x| \\
& u_{2}=\int \frac{g y_{1}}{\omega} d x=\int \frac{\tan x \cos x}{1} d x \\
&=\int \sin x d x=-\cos x
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=\cos x, \quad y_{2}=\sin x, \quad u_{1}=\sin x-\ln |\sec x+\tan x| \\
& u_{2}=-\cos x \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
&=\cos x(\sin x-\ln |\sec x+\tan x|)+\sin x(-\cos x) \\
&=\cos x \sin x-\cos x \ln |\sec x+\tan x|-\sin x \cos x \\
& y_{p}=-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

The general solution

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.
From yo given

$$
y_{1}=x^{2} \quad y_{2}=x^{-2}
$$

The wronskian $\begin{aligned} W=\left|\begin{array}{cc}x^{2} & x^{2} \\ 2 x & -2 x^{-3}\end{array}\right| & =-2 x^{2} x^{-3}-2 x x^{-2} \\ & =-4 x^{-1}\end{aligned}$

$$
=-4 x^{-1}
$$

we need $g(x)$: In standard form,

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}} \quad g(x)=\frac{\ln x}{x^{2}}
$$

We have $y_{1}=x^{2}, y_{2}=x^{-2}, \omega=-4 x^{-1}, g(x)=\frac{\ln x}{x^{2}}$.
sutting $y_{p}=u_{1} y_{1}+u_{2} y_{2}$

$$
\begin{array}{rl}
u_{1} & =\int \frac{-g y_{2}}{w} d x=\int-\frac{\ln x}{x^{2}} \cdot x^{-2} \\
-4 x^{-1} & d x \\
& =\frac{1}{4} \int \ln x\left(x^{-3}\right) d x=\frac{1}{4} \int x^{-3} \ln x d x \\
u_{1} & =-\frac{1}{8} x^{-2} \ln x-\frac{1}{16} x^{-2} \\
u_{2} & =\int \frac{g y_{1}}{w} d x=\int \frac{\frac{\ln x}{x^{2}} x^{2}}{-4 x^{-1}} d x=\frac{-1}{4} \int x \ln x d x
\end{array}
$$

$$
\begin{aligned}
u_{2} & =\frac{-1}{8} x^{2} \ln x+\frac{1}{16} x^{2} \quad y_{1}=x^{2}, y_{2}=x^{-2} \\
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(\frac{-1}{8} x^{-2} \ln x-\frac{1}{16} x^{-2}\right) x^{2}+\left(\frac{-1}{8} x^{2} \ln x+\frac{1}{16} x^{2}\right) x^{-2} \\
& =\frac{-1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16} \\
& =\frac{-1}{4} \ln x
\end{aligned}
$$

The gererd solution

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x, \quad y(1)=-1, \quad y^{\prime}(1)=0
$$

we found the genera solution

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

Apply the initial conditions

$$
\begin{aligned}
& y^{\prime}=2 c_{1} x-2 c_{2} x^{-3}-\frac{1}{4} \frac{1}{x} \\
& y(1)=c_{1}\left(1^{2}\right)+c_{2}\left(i^{-2}\right)-\frac{1}{4} \ln 1=-1 \\
& c_{1}+c_{2}=-1 \\
& y^{\prime}(1)=2 c_{1}(1)-2 c_{2}\left(i^{-3}\right)-\frac{1}{4} \frac{1}{1}=0
\end{aligned}
$$

$$
\begin{array}{rl}
2 c_{1}-2 c_{2}=\frac{1}{4} \\
c_{1}+c_{2}=-1 & 2 c_{1}+2 c_{2}=-2 \\
2 c_{1}-2 c_{2}=\frac{1}{4} & 2 c_{1}-2 c_{2}=\frac{1}{4}
\end{array}
$$

add $4 c_{1}=\frac{-7}{4} \Rightarrow c_{1}=\frac{-7}{16}$
subtract $4 C_{2}=\frac{-9}{4} \Rightarrow C_{2}=\frac{-9}{16}$

The solution to the WP is

$$
y=\frac{-7}{16} x^{2}-\frac{9}{16} x^{-2}-\frac{1}{4} \ln x
$$

