July 7 Math 2306 sec. 53 Summer 2022

Section 11: Linear Mechanical Equations

Simple Harmonic Motion
We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law
Newton's Second Law: $F=$ ma (mass times acceleration)

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ (proportional to displacement)
Equate the forces

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \Rightarrow m x^{\prime \prime}+k x=0
$$

$2^{\text {hd }}$ arden, linear, homogeneous, constant coff. ODE, In standard form

$$
x^{\prime \prime}+\omega^{2} x=0 \quad \omega=\sqrt{\frac{k}{m}}
$$

Displacment in Equilibrium

Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$
W=k \delta x
$$

The units for k in this system of measure are lb/ft.

$$
k=\frac{w}{\delta x} \frac{b}{-1 t}
$$

Obtaining the Spring Constant (US Customary Units)

Note also that Weight $=$ mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$
W=m g
$$

We typically take the approximation $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. The units for mass are lb sec${ }^{2} / \mathrm{ft}$ which are called slugs.

$$
m=\frac{w}{g} \text { slugs }
$$

Obtaining the Spring Constant (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N / m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

$$
W=m g \text { taking the approximation } g=9.8 \mathrm{~m} / \mathrm{sec}^{2} .
$$

The Circular Frequency ω

Applying Hooke's law with the weight as force, we have

$$
m g=k \delta x . \quad \Rightarrow \frac{m g}{m \delta x}=\frac{k \delta x}{m \delta x}
$$

We observe that the value ω can be deduced from δx by

$$
\omega^{2}=\frac{k}{m}=\frac{g}{\delta x}
$$

Provided that values for δx and g are used in appropriate units, ω is in units of per second.

Simple Harmonic Motion

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

called the equation of motion.

Caution: The phrase equation of motion is used differently by different authors.

Some use this phrase to refer the IVP (1). Others use it to refer to the solution to the IVP such as (2).

Simple Harmonic Motion

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}^{1}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{1}$ Various authors call f the natural frequency and others use this term for ω. $\overline{\bar{z}}$

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Amplitude and Phase Shift (alternative definition)

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \cos (\omega t-\hat{\phi})
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and this phase shift $\hat{\phi}$ must be defined by

$$
\cos \hat{\phi}=\frac{x_{0}}{A}, \quad \text { with } \quad \sin \hat{\phi}=\frac{x_{1}}{\omega A} .
$$

Example
An object stretches a spring 6 inches in equilibrium. Assuming no driving force and no damping, set up the differential equation describing this system.

The ODE is of the form

$$
x^{\prime \prime}+\omega^{2} x=0
$$

were given displacement in equilibrium

$$
\delta x=6 \text { in }
$$

we car use the formula $\omega^{2}=\frac{g}{\delta x}$

$$
\delta x=\frac{1}{2} \mathrm{ft} \quad \delta=32 \mathrm{ft} / \mathrm{sec}^{2}
$$

$$
\begin{aligned}
& w^{2}=\frac{32 \mathrm{ft} / \mathrm{sec}^{2}}{\frac{1}{2} \mathrm{ft}}=64 \frac{1}{\mathrm{sec}^{2}} \\
& x^{\prime \prime}+64 x=0 \quad \text { is the } \\
& \text { ODE }
\end{aligned}
$$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

Let's compute k and m.
The weight $W=41 b$. Here $\delta x=\frac{1}{2} \mathrm{ft}$

$$
w=k \delta x \Rightarrow k=\frac{41 b}{\frac{1}{2} f t}=8 \frac{1 b}{f t}
$$

The mass:

$$
\begin{aligned}
& \text { mass: } \\
& W=m g \Rightarrow m=\frac{41 b}{32 \frac{t+}{s e c}}=\frac{1}{8} \operatorname{sings}
\end{aligned}
$$

The IVP is

$$
x^{\prime \prime}+64 x=0, \quad x(0)=4 \quad x^{\prime}(0)=-24
$$

The charenckeristic egn is

$$
\begin{aligned}
& r^{2}+64=0 \Rightarrow r^{2}=-64 \Rightarrow r= \pm 8 i \\
& x=c_{1} \cos (8 t)+c_{2} \sin (8 t) \\
& x^{\prime}=-8 c_{1} \sin (8 t)+8 c_{2} \cos (8 t)
\end{aligned}
$$

$$
\begin{aligned}
& x(0)=c_{1} \cos (0)+c_{2} \sin (0)=4 \Rightarrow c_{1}=4 \\
& x^{\prime}(0)=-8 c_{1} \sin (0)+8 c_{2} \cos (0)=-24 \Rightarrow c_{2}=\frac{-24}{8}=-3
\end{aligned}
$$

The equation of motion

$$
x=4 \cos (8 t)-3 \sin (8 t)
$$

The period $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{8}=\frac{\pi}{4}$
The frequency $f=\frac{1}{T}=\frac{4}{\pi}$

$$
\omega=8
$$

The amplitude $A=\sqrt{4^{2}+(-3)^{2}}=5$
$x=5 \sin (8 t+\phi)$ where

$$
\begin{aligned}
\sin \phi & =\frac{x_{1}}{A}=\frac{4}{5} \text { and } \cos \phi=\frac{X_{1}}{15 A}=\frac{-3}{5} \\
\phi & =\cos ^{-1}\left(-\frac{3}{5}\right)=2.21 \quad \phi \approx 127^{\circ}
\end{aligned}
$$

The phase shift is about 2.21 rad.

Free Damped Motion

Figure: If a damping force is added, we'll assume that this force is proportional to the instantaneous velocity.

Free Damped Motion

Now we wish to consider an added force corresponding to damping-friction, a dashpot, air resistance.

Total Force $=$ Force of spring + Force of damping

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x \quad \Longrightarrow \quad \frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
$$

where

$$
2 \lambda=\frac{\beta}{m} \quad \text { and } \quad \omega=\sqrt{\frac{k}{m}} .
$$

Three qualitatively different solutions can occur depending on the nature of the roots of the characteristic equation

$$
r^{2}+2 \lambda r+\omega^{2}=0 \quad \text { with roots } \quad r_{1,2}=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

Case 1: $\lambda^{2}>\omega^{2}$ Overdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{t \sqrt{\lambda^{2}-\omega^{2}}}+c_{2} e^{-t \sqrt{\lambda^{2}-\omega^{2}}}\right)
$$

Figure:Two distinct real roots. No oscillations. Approach to equilibrium may be slow.

Case 2: $\lambda^{2}=\omega^{2}$ Critically Damped

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

Figuref 'One real root. No oscillations. Fastest approach to equilibrium.

Case 3: $\lambda^{2}<\omega^{2}$ Underdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \left(\omega_{1} t\right)+c_{2} \sin \left(\omega_{1} t\right)\right), \quad \omega_{1}=\sqrt{\omega^{2}-\lambda^{2}}
$$

Figure:Complex conjugate roots. Oscillations occur as the system approaches (resting) equilibritum.

Comparison of Damping

Figure: Comparison of motion for the three damping types.

Example
A 2 kg mass is attached to a spring whose spring constant is $12 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a damping force numerically equal to 10 times the instantaneous velocity. Write the differential equation describing this system. Determine if the motion is underdamped, overdamped or critically damped.

The ODE is

$$
\begin{aligned}
& m x^{\prime \prime}+\beta x^{\prime}+k x=0 \\
& m=2, \quad k=12, \quad \beta=10 \\
& 2 x^{\prime \prime}+10 x^{\prime}+12 x=0 \\
& \text { In standard form: } \quad x^{\prime \prime}+5 x^{\prime}+6 x=0
\end{aligned}
$$

Charactei.it. c eq. $\quad r^{2}+5 r+6=0$
This factors $\quad(r+2)(r+3)=0$

$$
\Rightarrow r=-2 \text { or } r=-3
$$

Since there are two distinct red roots. the system is oven damped.

Example
A 3 kg mass is attached to a spring whose spring constant is $12 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a damping force numerically equal to 12 times the instantaneous velocity. Write the differential equation describing this system. Determine if the motion is underdamped, overdamped or critically damped. If the mass is released from the equilibrium position with an upward velocity of $1 \mathrm{~m} / \mathrm{sec}$, solve the resulting initial value problem.
The $O D \in$ is $m x^{\prime \prime}+\beta x^{\prime}+k x=0$

$$
\begin{aligned}
& m=3, \quad \beta=12, \quad h=12 \\
& \text { so } 3 x^{\prime \prime}+12 x^{\prime}+12 x=0 \\
& \text { In standard form } x^{\prime \prime}+4 x^{\prime}+4 x=0
\end{aligned}
$$

The Characteristic ign

$$
\begin{aligned}
r^{2}+4 r+4=0 \Rightarrow & (r+2)^{2}=0 \\
& r=-2 \text { repected }
\end{aligned}
$$

The system is critically damped

The solution is

$$
x=c_{1} e^{-2 t}+c_{2} t e^{-2 t}
$$

From the statement, $x(0)=0$ and $x^{\prime}(0)=1$

$$
x^{\prime}(t)=-2 c_{1} e^{-2 t}+c_{2} e^{-2 t}-2 c_{2} t e^{-2 t}
$$

$$
\begin{aligned}
& x(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=0 \Rightarrow c_{1}=0 \\
& x^{\prime}(0)=c_{2} e^{0}-2 c_{2} \cdot 0 e^{0}=1 \Rightarrow c_{2}=1
\end{aligned}
$$

The displace mont

$$
x(t)=t e^{-2 t}
$$

Driven Motion

We can consider the application of an external driving force (with or without damping). Assume a time dependent force $f(t)$ is applied to the system. The ODE governing displacement becomes

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x+f(t), \quad \beta \geq 0
$$

Divide out m and let $F(t)=f(t) / m$ to obtain the nonhomogeneous equation

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)
$$

$2^{\text {nd }}$ order linear constant coef, nonhomogeneous

Forced Undamped Motion and Resonance

Consider the case $F(t)=F_{0} \cos (\gamma t)$ or $F(t)=F_{0} \sin (\gamma t)$, and $\lambda=0$. Two cases arise
(1) $\gamma \neq \omega, \quad$ and (2) $\quad \gamma=\omega$.

Taking the sine case, the DE is

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

with complementary solution

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is

$$
x_{p}=A \cos (\gamma t)+B \sin (\gamma t) \quad \text { suppose } \quad \gamma \neq \omega
$$

This is the correct form since $\gamma \neq \omega$.
The sen. solution would be

$$
x=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)+A \cos (\gamma t)+B \sin (\gamma t)
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is

$$
\begin{array}{ll}
x_{p}=A \cos (\gamma t)+B \sin (\gamma t) & \text { Suppose } \quad \gamma=\omega
\end{array}
$$

This moteser x_{c}. The correct form is

$$
x_{p}=A t \cos (\omega t)+B+\sin (\omega t)
$$

The geverd soln.

$$
x=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)+A t \cos (\omega t)+B t \sin (\omega t)
$$

Forced Undamped Motion and Resonance

For $F(t)=F_{0} \sin (\gamma t)$ starting from rest at equilibrium:

Case (1): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}}\left(\sin (\gamma t)-\frac{\gamma}{\omega} \sin (\omega t)\right)
$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance

Case (2): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\omega t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{2 \omega^{2}} \sin (\omega t)-\frac{F_{0}}{2 \omega} t \cos (\omega t)
$$

Note that the amplitude, α, of the second term is a function of t :

$$
\alpha(t)=\frac{F_{0} t}{2 \omega}
$$

which grows without bound!

Forced Motion and Resonance Applet

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω.

