July 11 Math 3260 sec. 51 Summer 2023

Section 4.5: Dimension of a Vector Space

Theorem:

If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

Corollary:

If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

Dimension of a Vector Space V

Definition:

If V is spanned by a finite set, then V is called finite dimensional. In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0
$$

If V is not spanned by a finite set ${ }^{2}$, then V is said to be infinite dimensional.
${ }^{a} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Subspaces and Dimension

Theorem:

Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Theorem:

Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

Column and Null Spaces

Theorem:

Let A be an $m \times n$ matrix. Then
$\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and
$\operatorname{dim} \operatorname{Col} A=$ the number of pivot positions in A.

Remarks

- Row operations preserve row space, but change linear dependence relations of rows.
- Row operations change column space, but preserve linear dependence relations of columns.
- Another way to obtain a basis for Row A is to take the transpose A^{T} and do row operations. We have the following relationships:

$$
\operatorname{Row} A=\operatorname{Col} A^{T} \quad \text { and } \quad \operatorname{Col} A=\operatorname{Row} A^{T}
$$

Rank \& Nullity

Definition:

The rank of a matrix A, denoted $\operatorname{rank}(A)$, is the dimension of the column space of A.

Definition:

The nullity of a matrix A is the dimension of the null space.

Remark: Since the dimension of the column space is the number of pivot positions, the dimensions of the column and row spaces are the same. That is,

$$
\operatorname{rank}(A)=\operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)
$$

The Rank-Nullity Theorem

Theorem:

For $m \times n$ matrix $A, \operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)=\operatorname{rank}(A)$. Moreover

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

Note: This theorem states the rather obvious fact that
$\left\{\begin{array}{c}\text { number of } \\ \text { pivot columns }\end{array}\right\}+\left\{\begin{array}{c}\text { number of } \\ \text { non-pivot columns }\end{array}\right\}=\left\{\begin{array}{c}\text { total number } \\ \text { of columns }\end{array}\right\}$.

Examples
(1) A is a 5×4 matrix and $\operatorname{rank}(A)=4$. What is $\operatorname{dim} \operatorname{Nul} A$?
sank + nullity $=n$
Here $n=4, \operatorname{rank}(A)=4$

$$
\operatorname{dim}(\operatorname{Nul} A)=4-4=0
$$

$A \vec{x}=\overrightarrow{0}$ has no nontrivid solutions.

Examples
(2) Suppose A is 7×5 and $\operatorname{dim} \operatorname{Col} A=2$. Determine the nullity of A.

$$
\begin{gathered}
\text { rank +nullity }=n \\
n=s, \operatorname{ronk}(A)=\operatorname{din}(\operatorname{col} A)=2 \\
\text { nullity }=5-2=3
\end{gathered}
$$

Examples

(3) Suppose A is 7×5 and $\operatorname{dim} \operatorname{Col} A=2$. Determine

1. the rank of A^{T}

$$
\begin{gathered}
\operatorname{rank}\left(A^{\top}\right)=\operatorname{dim}\left(\operatorname{Col} A^{\top}\right) \\
=\operatorname{dim}(\operatorname{Row} A)=2
\end{gathered}
$$

2. the nullity of $A^{T} \quad A^{\top}$ is $5 \times 7 \Rightarrow \Omega=7$

$$
\begin{aligned}
\text { nullity } & =n-\operatorname{rank}\left(\overline{A^{\prime}}\right) \\
& =7-2=5
\end{aligned}
$$

Addendum to Invertible Matrix Theorem

Theorem:

Let A be an $n \times n$ matrix. The following are equivalent to the statement that A is invertible.
(m) The columns of A form a basis for \mathbb{R}^{n}
(n) $\operatorname{Col} A=\mathbb{R}^{n}$
(o) $\operatorname{dim} \operatorname{Col} A=n$
(p) $\operatorname{rank} A=n$
(q) $\operatorname{Nul} A=\{0\}$
(r) $\operatorname{dim} \operatorname{Nul} A=0$

Section 5.1: Eigenvectors and Eigenvalues

Consider the matrix A and vectors \mathbf{u} and \mathbf{v}.

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

Plot $\mathbf{u}, A \mathbf{u}, \mathbf{v}$, and $A \mathbf{v}$ on the axis on the next slide.

$$
\begin{aligned}
& \hat{u}_{u}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-1
\end{array}\right] \\
& A_{v}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

Example Plot

Figure

Eigenvalues and Eigenvectors

Remark: Note the action of A on the two vectors seems fundamentally different.

- A seems to both stretch and rotate the vector \mathbf{u}.
- The action of A on the vector \mathbf{v} is just a stretch/compress.

$$
A \mathbf{v} \text { is in } \operatorname{Span}\{\mathbf{v}\} .
$$

We wish to consider matrices with vectors that satisfy relationships such as

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { or } \quad A \mathbf{x}=-4 \mathbf{x}, \quad \text { or more generally } A \mathbf{x}=\lambda \mathbf{x}
$$

for constant λ —and for nonzero vector \mathbf{x}.

Definition of Eigenvector and Eigenvalue

Definition:

Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Note that built right into this definition is that the eigenvector \mathbf{x} MUST BE a nonzero vector!

Example
The number $\lambda=-4$ is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Find the corresponding eigenvectors.
we seek \vec{x} in \mathbb{R}^{2} such that $A \vec{x}=-4 \vec{x}$.
Let $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

$$
\begin{aligned}
& A \vec{x}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+6 x_{2} \\
5 x_{1}+2 x_{2}
\end{array}\right]=\left[\begin{array}{l}
-4 x_{1} \\
-4 x_{2}
\end{array}\right] \\
& x_{1}+6 x_{2}=-4 x_{1} \Rightarrow \quad 5 x_{1}+6 x_{2}=0 \\
& 5 x_{1}+2 x_{2}=-4 x_{2} \Rightarrow \quad 5 x_{1}+6 x_{2}=0
\end{aligned}
$$

This equation is homogeneous with coefficient matrix $A-(-4) I$

$$
\left[\begin{array}{lll}
5 & 6 & 0 \\
5 & 6 & 0
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ccc}
1 & 6 / 5 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=-\frac{6}{5} x_{2} \\
& x_{2} \text {-free }
\end{aligned}
$$

The eisen vectors look like

$$
\vec{x}=x_{2}\left[\begin{array}{c}
-6 / 5 \\
1
\end{array}\right] \text { for } x_{2} \neq 0
$$

Let's check with one sud vector.

Let $\vec{v}=\left[\begin{array}{c}-6 \\ 5\end{array}\right]$. This is taking $x_{2}=5$.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right] \\
& A \vec{v}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{c}
-6 \\
5
\end{array}\right]=\left[\begin{array}{c}
24 \\
-20
\end{array}\right]=-4\left[\begin{array}{c}
-6 \\
5
\end{array}\right]
\end{aligned}
$$

Eigenspace

Definition:

Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vectori.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda l$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

Example
The matrix $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ has eigenvalue $\lambda=2$. Find a basis for the eigenspace of A corresponding to λ.

$$
\begin{aligned}
A-2 I & =\left[\begin{array}{ccc}
4 & -i & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \quad \begin{array}{l}
\text { were looking for } \\
\text { solutions. to } \\
\\
\\
\end{array} \begin{array}{ll}
1-2 I) \vec{x}=\overrightarrow{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{1}{2} x_{2}-3 x_{3} \\
& x_{2}, x_{3} \text { are free } \vec{x}=x_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

A basis for the eikon space
is $\left\{\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]\right\}$.

Matrices with Nice Structure

Theorem:

If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Example: Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & \pi & 0 \\ -1 & 0 & 1\end{array}\right]$

$$
\begin{gathered}
\text { The }{ }_{3} \text { are } \lambda_{1}=3, \lambda_{2}=\pi \text {, and } \\
\lambda_{3}=1
\end{gathered}
$$

Example
Suppose $\lambda=0$ is an eigenvalue ${ }^{1}$ of a matrix A. Argue that A is not invertible.

Since zero is an eigenvalue, there is a nonzero vector \vec{x} such that $A \vec{x}=0 \vec{x}=\overrightarrow{0}$. That is, $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution. By the invertible matrix the orem, A is not invertible.
${ }^{1}$ Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

July 10, $2023 \quad 23 / 91$

Theorems

Theorem:

A square matrix A is invertible if and only if zero is not and eigenvalue.

Theorem:

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

Linear Independence
Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of a matrix A corresponding to distinct eigenvalues λ_{1} and λ_{2} (ie. $\lambda_{1} \neq \lambda_{2}$).

Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.
Note $A \vec{V}_{1}=\lambda_{1} \vec{V}_{1}$ and $A \vec{V}_{2}=\lambda_{2} \vec{V}_{2}$
Consider $\quad C_{1} \vec{V}_{1}+C_{2} \vec{V}_{2}=\vec{O}$
Lets create two equations.
E_{1} : multiply through by λ_{1} assuming

$$
\begin{aligned}
& \lambda_{1} \neq 0 \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\lambda_{1} \vec{O}=\overrightarrow{0}
\end{aligned}
$$

Ez: muetiop'y through by A

$$
\begin{aligned}
& A\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=A \overrightarrow{0}=\overrightarrow{0} \\
& c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}=\overrightarrow{0} \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}=\overrightarrow{0} \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0}
\end{aligned}
$$

sub tract

$$
\begin{aligned}
& c_{2} \lambda_{2} \vec{v}_{2}-c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0} \\
& c_{2}\left(\lambda_{2}-\lambda_{1}\right) \vec{v}_{2}=\overrightarrow{0}
\end{aligned}
$$

$\vec{V}_{2} \neq \vec{O}$ because it's on eigenvector.
$\lambda_{2}-\lambda_{1} \neq 0$ be cause $\lambda_{1} \neq \lambda_{2}$

$$
\Rightarrow \quad c_{2}=0 .
$$

The orisinal equation becomes

$$
c_{1} \vec{v}_{1}=\overrightarrow{0} \Rightarrow c_{1}=0
$$

Hence $c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}=\overrightarrow{0}$ has only, the trivial solution. $\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$ is lin. independent.

Section 5.2: The Characteristic Equation
Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$ by appealing to the fact that the equation $A \mathbf{x}=\lambda l_{2} \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

$$
\left(A-\lambda I_{2}\right) \mathbf{x}=\mathbf{0} .
$$

Consider $A-\lambda I=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$

$$
=\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]
$$

we con insist that $\operatorname{det}(A-\lambda I)=0$.

This will guarantee nontrivial solutions to the homogeneous eqn.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(2-\lambda)(-6-\lambda)-9 \\
& =\lambda^{2}+4 \lambda-12-9 \\
& =\lambda^{2}+4 \lambda-21
\end{aligned}
$$

we want λ such that

$$
\begin{gathered}
\lambda^{2}+4 \lambda-21=0 \\
(\lambda+7)(\lambda-3)=0
\end{gathered}
$$

we get two solutions $\lambda_{1}=-7$ and

$$
\begin{aligned}
& \lambda_{2}=3 . \\
& {\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right] A-(-7) I-\left[\begin{array}{ll}
9 & 3 \\
3 & 1
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cc}
1 & 1 / 3 \\
0 & 0
\end{array}\right]} \\
& A-3 I=\left[\begin{array}{cc}
-1 & 3 \\
3 & -9
\end{array}\right] \stackrel{\text { ret }}{\rightarrow}\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Another Addendum to the Invertible Matrix Thm.

Theorem:

The $n \times n$ matrix A is invertible if and only if ${ }^{a}$
(s) The number 0 is not an eigenvalue of A.
(t$)$ The determinant of A is nonzero.
${ }^{\text {a }}$ This is nothing new, we're just adding to the list.

Characteristic Equation

Definition:

For $n \times n$ matrix A, the expression $\operatorname{det}(A-\lambda I)$ is an $n^{t h}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:

The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

Theorem:

The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Example
Find the characteristic equation for the matrix and identify all of its eigenvalues.

$$
A=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right]
$$

The characteristic equation is

$$
\begin{gathered}
(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda)=0 \\
(5-\lambda)^{2}(3-\lambda)(1-\lambda)=0
\end{gathered}
$$

The eigenvalues are

$$
\lambda_{1}=5, \quad \lambda_{2}=3, \quad \lambda_{3}=1
$$

Multiplicities

Definition:

The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda=5$ of

$$
A=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& \text { The characteristic } \\
& (5-\lambda)^{2}(3-\lambda)(1-\lambda)
\end{aligned}
$$

The algebraic multiplicity is 2 .
we need to conside a basis for the null space of $A-S I$.

$$
\begin{aligned}
& A-S I=\left[\begin{array}{cccc}
0 & -2 & 6 & -1 \\
0 & -2 & -8 & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & -4
\end{array}\right] \\
& \left.\xrightarrow{\text { ret }}\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1} \text { is tue } \\
x_{2}=x_{3}=x_{4}=0 \\
\operatorname{dim}(\operatorname{wnl}(A-5 I))=1
\end{array} \quad \begin{array}{l}
\text { (one fere } \\
\text { variable }
\end{array}\right)
\end{aligned}
$$

The geometric mult-plicity is 1.

Similarity

Definition:

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P .
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation ${ }^{2}$.
${ }^{a}$ Note: similarity is NOT related to row equivalence.

Theorem:

If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

If $B=P^{-1} A P$, then $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$

$$
\begin{aligned}
B-\lambda I & =P^{-1} A P-\lambda I \quad \text { wote } I=P^{-1} I P \\
& =P^{-1} A P-\lambda P^{-1} I P \\
& =P^{-1}(A P-\lambda I P) \\
& =P^{-1}(A-\lambda I) P \\
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right)
\end{aligned}
$$

$$
\begin{aligned}
* & \operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y) \\
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}(A-\lambda I) \operatorname{det}(\underbrace{\left.P^{-1}\right)}_{\ddot{1}} \operatorname{det}(P) \\
& =\operatorname{det}(A-\lambda I) \\
\operatorname{det}(B-\lambda I) & =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

