July 13 Math 3260 sec. 51 Summer 2023

Section 5.2: The Characteristic Equation

Definition: Eigenvalues \& Eigenvectors

Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Eigenspace

Definition:

Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-
i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

Characteristic Equation

Definition:

For $n \times n$ matrix A, the expression $\operatorname{det}(A-\lambda I)$ is an $n^{t h}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:

The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

Theorem: Eigenvalues

The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Definition: Multiplicities

The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

For an eigenvalue λ_{i} the

- algebraic mutliplicity $=$ the power on $\left(\lambda-\lambda_{i}\right)$ in $\operatorname{det}(A-\lambda /)=0$
- geometric multiplicity $=$ number of free variables in
$\left(A-\lambda_{i} /\right) \mathbf{x}=\mathbf{0}$.

Similarity

Definition: Similar Matrices

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P .
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation ${ }^{2}$.
${ }^{a}$ Note: similarity is NOT related to row equivalence.

Theorem:

If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

Example
Show that $A=\left[\begin{array}{cc}-18 & 42 \\ -7 & 17\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$ are similar with the matrix P for the similarity transformation given by $P=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$.
we need to show that

$$
\begin{array}{ll}
B=P^{-1} A P & \operatorname{det}(P)=2-3=-1 \\
P^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right] \\
P^{-1} A P=\left[\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
6 & -12 \\
3 & -4
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 0 \\
0 & -4
\end{array}\right] \\
& =B
\end{aligned}
$$

Example Continued...
Show that the columns of P are eigenvectors of A where

$$
A=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
$$

Let $\vec{p}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\vec{p}_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
we need to show that $A_{p}=\lambda_{1} \vec{p}_{1}$ and $A_{\vec{p}_{2}}=\lambda_{2} \vec{p}_{2}$

$$
A_{\vec{p}_{1}}=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right]=3 \vec{p}_{1}
$$

$$
A \vec{p}_{2}=\left[\begin{array}{ll}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
-12 \\
-4
\end{array}\right]=-4\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Eigenvalues of a real matrix need not be real Find the eigenvalues of the matrix $A=\left[\begin{array}{cc}4 & 3 \\ -5 & 2\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
4-\lambda & 3 \\
-5 & 2-\lambda
\end{array}\right| \\
& =(4-\lambda)(2-\lambda)+15=\lambda^{2}-6 \lambda+23
\end{aligned}
$$

The characteristic equation is

$$
\lambda^{2}-6 \lambda+23=0
$$

Completing the square

$$
\begin{aligned}
& \lambda^{2}-6 \lambda+9+14=0 \\
&(\lambda-3)^{2}=-14 \\
& \lambda=3 \pm \sqrt{14} i
\end{aligned}
$$

no seal roots.

Section 5.3: Diagonalization
Motivational Example:
Determine the eigenvalues of the matrix D^{3} (that's D cubed), where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right] . \\
& D^{2}=D D=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]=\left[\begin{array}{cc}
9 & 0 \\
0 & 16
\end{array}\right] \\
&=\left[\begin{array}{cc}
3^{2} & 0 \\
0 & (-4)^{2}
\end{array}\right] \\
& D^{3}=D D^{2}=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
3^{2} & 0 \\
0 & (-4)^{2}
\end{array}\right]=\left[\begin{array}{cc}
3^{3} & 0 \\
0 & (-4)^{3}
\end{array}\right]
\end{aligned}
$$

The eisen values of D^{3} are 3^{3} and $(-4)^{3}$

Recall that a matrix D is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Theorem

If D is a diagonal matrix with diagonal entries $d_{i j}$, then D^{k} is diagonal with diagonal entries $d_{i j}^{k}$ for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

$$
D=\left[\begin{array}{cccc}
d_{11} & 0 & \cdots & 0 \\
0 & d_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}
\end{array}\right] \Longrightarrow D^{k}=\left[\begin{array}{cccc}
d_{11}^{k} & 0 & \cdots & 0 \\
0 & d_{22}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}^{k}
\end{array}\right]
$$

Powers and Similarity

Suppose A and B are similar matrices with similarity transform matrix P-i.e., $B=P^{-1} A P$. Show that
a. A^{2} and B^{2} are similar with the same P,
b. A^{3} and B^{3} are similar with the same P.

$$
\begin{aligned}
B & =P^{-1} A P \\
B^{2} & =\left(P^{-1} A P\right)^{2} \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A\left(P P^{-1}\right) A P \\
& =P^{-1} A I A P=P^{-1} A A P
\end{aligned}
$$

$$
\begin{aligned}
B^{2} & =P^{-1} A^{2} P \\
B^{3} & =B B^{2}=\left(P^{-1} A P\right)\left(P^{-1} A^{2} P\right) \\
& =P^{-1} A\left(P P^{-1}\right) A^{2} P \\
& =P^{-1} A I A^{2} P \\
& =P^{-1} A A^{2} P \\
B^{3} & =P^{-1} A^{3} P
\end{aligned}
$$

Diagonalizability

Defintion:

An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem:

The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
(1) Find the eigenvalues.

$$
\begin{aligned}
& A-\lambda I=\left[\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right] \\
& \operatorname{det}(A-\lambda I)=(1-\lambda)\left|\begin{array}{cc}
-5-\lambda & -3 \\
3 & 1-\lambda
\end{array}\right|-3\left|\begin{array}{cc}
-3 & -3 \\
3 & 1-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
-3 & -5-\lambda \\
3 & 3
\end{array}\right| \\
& =(1-\lambda)(-(5+\lambda)(1-\lambda)+9)-3(-3+3 \lambda+9)+3(-9+15+3 \lambda)
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda)\left[-\left(-\lambda^{2}-4 \lambda+5\right)+9\right]-3(3 \lambda+6)+3(3 \lambda+6) \\
& =(1-\lambda)\left(\lambda^{2}+4 \lambda-5+9\right) \\
& =(1-\lambda)\left(\lambda^{2}+4 \lambda+4\right)=(1-\lambda)(\lambda+2)^{2}
\end{aligned}
$$

Characteristic equation

$$
(i-\lambda)(\lambda+2)^{2}=0 \Rightarrow \lambda_{1}=1, \lambda_{2}=-2
$$

Find eigenvectors:

$$
\lambda_{1}=1 \quad A-1 I=\left[\begin{array}{rrr}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\operatorname{rret}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{gathered}
x_{1}=x_{3} \\
x_{2}=-x_{3} \\
x_{3} \text { ha } \\
\text { Find eigen vectors } \\
\text { duly, } 13023 \\
19 / 101
\end{gathered}
$$

$$
\begin{aligned}
& \vec{V}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
& \lambda_{2}=-2 \quad A-(-2) I=\left[\begin{array}{ccc}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\operatorname{rret}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& x_{1}=-x_{2}-x_{3} \quad \vec{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& x_{2}, x_{3}-\text { fre } \\
& \vec{V}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{V}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

we have 3 lin. ind eisenvectors. A is diagunalizable.

$$
\begin{aligned}
& \text { A matrix } P=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& \begin{aligned}
P^{-1} & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right] \\
P^{-1} A P & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
-1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right]
\end{aligned} .
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]=D
$$

$$
\begin{array}{r}
P=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} \\
\lambda_{1} & \lambda_{2} & \lambda_{2} \\
D= & {\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]}
\end{array}, \begin{array}{r}
\end{array}\right]
\end{array}
$$

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$. (With a little effort, it can be shown that the characteristic polynomial of A is $(1-\lambda)(2+\lambda)^{2}$.)

Characteristic oqu $(1-\lambda)(2+\lambda)^{2}=0$

$$
\lambda_{1}=1, \quad \lambda_{2}=-2
$$

Find eigenvectors

$$
A-1 I=\left[\begin{array}{rrr}
1 & 4 & 3 \\
-4 & -7 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \vec{V}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \\
& A-(-2) I=\left[\begin{array}{rrr}
4 & 4 & 3 \\
-4 & -4 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
x_{1}=-x_{2}
$$

$$
x_{2} \text { - free }
$$

we get one basis

$$
x_{3}=0
$$ elemout for the liger space

$$
\vec{v}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

A doesil have 3 lim. ind. eisenvecturs. A is not diagonalizabls.

Sufficient Condition for Diagonalizability

Recall: Eigenvectors corresponding to different eigenvalues are linearly independent.

Theorem:

If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Remark

This is a sufficiency condition, not a necessity condition. This means that if a matrix has n different eigenvalues, it's guaranteed to be diagonalizable. If it has repeated eigenvalues, it may or may not be diagonalizable.

More on Diagonalizability

Theorem:

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) The geometric multiplicity of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k}.
(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n.
(c) If A is diagonalizable, and \mathcal{B}_{k} is a basis for the eigenspace for λ_{k}, then the collection (union) of bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n}.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis of \mathbb{R}^{n} for the matrix A.

Example
Diagonalize the matrix if possible. $A=\left[\begin{array}{cc}8 & -6 \\ 9 & -7\end{array}\right]$.

Find e.valves

$$
\operatorname{det}(A-\lambda I)=(8-\lambda)(-7-\lambda)+54
$$

$$
=\lambda^{2}-\lambda-56+54
$$

$$
=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)
$$

$$
(\lambda-2)(\lambda+1)=0 \Rightarrow \lambda_{1}=2 \text { and } \lambda_{2}=-1
$$

For $\lambda_{1}=2 \quad A-2 I=\left[\begin{array}{cc}6 & -6 \\ 9 & -9\end{array}\right] \xrightarrow{\operatorname{rret}}\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right] \begin{aligned} & x_{1}=x_{2} \\ & x_{2} \text { fra }\end{aligned}$

$$
\vec{V}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda_{2}=-1 \quad A-(-1) I=\left[\begin{array}{ll}9 & -6 \\ 9 & -6\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cc}1 & -2 / 3 \\ 0 & 0\end{array}\right]$

$$
x_{1}=\frac{2}{3} x_{2} x_{2}\left[\begin{array}{c}
2 / 3 \\
1
\end{array}\right]
$$

a chain $\vec{V}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
A matrix P is $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$

$$
\text { Givins } \quad D=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]
$$

Example Continued...
Find A^{3} where $A=\left[\begin{array}{cc}8 & -6 \\ 9 & -7\end{array}\right]$.

$$
D=P^{-1} A P
$$

$$
\begin{aligned}
& A^{3}=P D^{3} P^{-1} \quad D^{3}=P^{-1} A^{3} P \\
& D^{3}=\left[\begin{array}{cc}
2^{3} & 0 \\
0 & (-1)^{3}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right] \\
& P=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \quad P^{-1}=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] \\
& A^{3}=P D^{3} P^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
24 & -16 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
26 & -18 \\
27 & -19
\end{array}\right]
\end{aligned}
$$

Section 6.1: Inner Product, Length, and Orthogonality

Definition

For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{lll}
u_{1} & u_{2} \cdots u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Remark: Note that this product produces a scalar. It is sometimes called a scalar product.
Remark: This is the same dot product we defined before (without using the transpose) that we used to compute a matrix product entries.

The Norm

Definition

The norm of the vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is the nonnegative number

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

Theorem

For vector \mathbf{v} in \mathbb{R}^{n} and scalar c

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

Unit Vectors \& Normalizing

Definition

A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.

Remark

Given any nonzero vector \mathbf{v} in \mathbb{R}^{n}, we can find a unit vector in the direction of \mathbf{v} by dividing \mathbf{v} by its norm.

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|} \text { is a unit vector. }
$$

This is called normalizing the vector.

Distance in \mathbb{R}^{n}

Definition:

For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})
$$

and is defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^{2} between points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$,

$$
d=\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}}
$$

Example

Find the distance between the vectors $\mathbf{u}=(4,0,-1,1)$ and $\mathbf{v}=(0,0,2,7)$ in \mathbb{R}^{4}.

$$
\begin{aligned}
& \vec{u}-\vec{v}=(4,0,-3,-6) \\
& \operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\| \\
&=\sqrt{4^{2}+0^{2}+(-3)^{2}+(-6)^{2}}=\sqrt{61}
\end{aligned}
$$

Orthogonality

Definition:

Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Figure: Note that two vectors are perpendicular if $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$

Orthogonal and Perpendicular Show that $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

Let's show that $\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}$ if and only if $\vec{u} \cdot \vec{v}=0$. Note

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v}) \\
& =(\vec{u}-\vec{v})^{\top}(\vec{u}-\vec{v}) \\
& =\vec{u}^{\top} \vec{u}-\vec{v}^{\top} \vec{u}-\vec{u}^{\top} \vec{v}+\vec{v}^{\top} \vec{v} \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u} \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2 \vec{u} \cdot \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v} \\
\|\vec{u}-\vec{v}\|^{2} & =\|\vec{u}\|^{2}+\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}
\end{aligned}
$$

If $\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}$, then

$$
u \vec{u} \cdot \vec{v}=0 \Rightarrow \vec{u} \cdot \vec{v}=0
$$

If $\vec{u} \cdot \vec{v}=0$, then

$$
\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}
$$

The Pythagorean Theorem

Theorem:

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
$$

This follows immediately from the observation that

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}
$$

The two vectors are defined as being orthogonal precisely when
$\mathbf{u} \cdot \mathbf{v}=0$.

