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5.5 Compositions & Similarity

Suppose S : Rn → Rp and T : Rp → Rm are linear transformations, then we
can ask about the composition

T ◦ S : Rn → Rm.

Suppose
S(x⃗) = AS x⃗ , and T (y⃗) = AT y⃗ .

How is the standard matrix for the composition related to the standard
matrices of S and T ?

This gives the primary motivation for the way matrix multiplication is defined.
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Matrix Multiplication is Composition

Figure: x⃗ is mapped from Rn to Rp, then AS x⃗ is mapped from Rp to Rm. The
composition maps from Rn to Rm.

S : Rn −→ Rp =⇒ AS ∼ p × n

T : Rp −→ Rm =⇒ AT ∼ m × p

T ◦ S : Rn −→ Rm =⇒ AT AS ∼ m × n
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Example
Suppose that S : R3 → R2 is the linear transformation

S (⟨x1, x2, x3⟩) = ⟨2x1 + x2,2x1 + x2 + x3⟩
and suppose that T : R2 → R3 is the linear transformation

T (⟨x1, x2⟩) = ⟨−x1,3x1 − x2,−2x1 + 3x2⟩ .

Find the standard matrix for the composition T ◦ S.
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Reflection in Line Through the Origin

Figure: We want a transformation T to reflect a vector through a line through
the origin that makes an angle θ with the x1-axis.

We’ll do this in three steps.
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Start w/ Line & Vector

Figure: The line L makes an angle θ with respect to the x1-axis. We want to
reflect the vector x⃗ through it.

Apply: R−θ(x⃗) =
[

cos θ sin θ
− sin θ cos θ

]
x⃗ , call this y⃗ , i.e., y⃗ = R−θ(x⃗)
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Rotate θ Clockwise

Figure: Rotate through θ clockwise using R−θ. L becomes the x1-axis.

Next apply: Px1(y⃗) =
[

1 0
0 −1

]
y⃗ , call this z⃗, i.e., z⃗ = Px1(y⃗)

July 12, 2025 7 / 101



Reflect Through x1-axis

Figure: Reflect through the x1-axis using the Reflection transformation Px1 .

Finally apply: Rθ(z⃗) =
[

cos θ − sin θ
sin θ cos θ

]
z⃗, this is T (x⃗), i.e., T (x⃗) = Rθ(z⃗)
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Rotate θ Counter Clockwise

Figure: Then we rotation back through θ in the counterclockwise direction by
applying the transformation Rθ.

The total transformation is

T = Rθ ◦ Px1 ◦ R−θ, (recall Rθ = R−1
−θ )
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Similarity

Our complicated reflection through a line that was not horizontal can
be done with the “simple” reflection through a horizontal line. Note that
the matrix for this is the product

AT = A−1
−θAPx1

A−θ.

Note that the form of this is a matrix sandwiched between a matrix and
its inverse. The complicated projection T is said to be similar to the
simple projection Px1 .

Note that this only makes sense if we’re mapping from Rn back to itself.
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Similarity

A linear transformation T : Rn → Rn is said to be similar to a
linear transformation S : Rn → Rn if there exists an invertible
linear transformation P : Rn → Rn such that

T = P−1 ◦ S ◦ P.

Likewise, an n×n matrix A is said to be similar to an n×n matrix
B, if there exists an invertible n × n matrix C such that

A = C−1BC.

Note that this can be viewed either direction since T = P−1 ◦ S ◦ P and
A = C−1BC imply

S = P ◦ T ◦ P−1 and B = CAC−1
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Using Similarity
Consider the matrix A =

[
−8 −3
18 7

]
. Suppose we want to compute

A9.

A9 = AAAAAAAAA =

[
−8 −3
18 7

] [
−8 −3
18 7

]
· · ·

[
−8 −3
18 7

]
︸ ︷︷ ︸

nine factors of A.

Compare that to computing D9 if D =

[
−2 0

0 1

]
.
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A =

[
−8 −3
18 7

]
, D =

[
−2 0

0 1

]
, C =

[
3 1
2 1

]
C−1 =

[
1 −1

−2 3

]

What if we know that D = C−1AC which means that A = CDC−1?

Show that D2 = C−1A2C and D3 = C−1A3C.

July 12, 2025 13 / 101



Powers of Similar Matrices

If A and B are similar matrices, with B = C−1AC for some invertible
matrix C, then for every integer n ≥ 1

Bn = C−1AnC.

This means that A9 = CD9C−1. That’s two matrix multiplications
instead of eight matrix multiplications.
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A =

[
−8 −3
18 7

]
, D =

[
−2 0

0 1

]
, C =

[
3 1
2 1

]
C−1 =

[
1 −1

−2 3

]
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5.6 Linear Transformations for General Vector Spaces

Linear Transformation

Suppose V and W are vector spaces. A linear transformation from V
to W is a function T : V → W such that for each pair of vectors x⃗ and
y⃗ in V and for any scalar c

1. T (x⃗ + y⃗) = T (x⃗) + T (y⃗), and

2. T (cx⃗) = cT (x⃗).

The only difference is that we’ve replaced Rn and Rm with V and W .
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Example
Consider the vector spaces C1(R) and C0(R). The transformation

D : C1(R) → C0(R)

defined by
D(f ) = f ′

is a linear transformation.
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Theorem

If V and W are vector spaces and T : V → W is a linear trans-
formation, then T (0⃗V ) = 0⃗W .
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Range & Kernel

If V and W are vector spaces and T : V → W is a linear transformation,
we define the range of T to be

range (T ) = {y⃗ ∈ W | T (x⃗) = y⃗ for at least one x⃗ ∈ V}

and we define the kernel (also called null space) of T to be

ker (T ) =
{

x⃗ ∈ V | T (x⃗) = 0⃗W

}
.

Theorem

Let V and W be vector spaces and T : V → W be a linear transforma-
tion. Then range(T ) is a subspace of W and ker(T ) is a subspace of V .

dim(range(T )) + dim(ker(T )) = dim(V ).
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Invertibility

Suppose that V and W are vector spaces and suppose that T :
V → W is a linear transformation. We say that T is invertible
if range (T ) = W and T is also one–to–one. If T is invertible,
then the inverse of T is defined to be the function T−1 : W → V
defined by

T−1 (y⃗) = x⃗ where x⃗ is the unique vector in V such that T (x⃗) = y⃗ .

The equation dim(range(T )) + dim(ker(T )) = dim(V ) implies that T can only be invertible if
dim(V ) = dim(W ). Of course, even if dim(V ) = dim(W ) a transformation may not be invertible.

It is also the case that if T is invertible, then T−1 : W → V is also a linear transformation.
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Example D : C1(R) → C0(R) where D(f ) = f ′.

Let’s show that D is not invertible1.

1. If f (x) = cos(x), find D(f )

2. If g(x) = cos(x)− 3, find D(g)

3. How many solutions are there to the equation D(f ) = − sin(x)?

4. Why does the above imply that D is not invertible?

5. What is ker(D)?

1The Fundamental Theorem of Calculus does indicate that range(D) = C0(R).
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Powers of T : V → V

If T : V → V is a linear transformation, we can compose T with itself
and represent such compositions as “power.”

T 2 = T ◦ T
T 3 = T ◦ T ◦ T

...

For example, consider D : C∞(R) → C∞(R) defined by D(f ) = f ′.
Then

D2(f ) = f ′′, D3(f ) = f ′′′, . . . Dn(f ) = f (n).
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Remember this Lemma?

Lemma

Suppose that S is a subspace of a vector space V and B =
{v⃗1, . . . , v⃗k} is an ordered basis of S. If x⃗ and y⃗ are any two
vectors in S and c is any scalar then

1. [x⃗ + y⃗ ]B = [x⃗ ]B + [y⃗ ]B and

2. [cx⃗ ]B = c [x⃗ ]B.

This means that the transformation from S to Rk that maps x⃗ in S to
the coordinate vector [x⃗ ]B in Rk is a linear transformation!

Plus, dim(S) = k because there are k basis elements, and
dim(Rk ) = k , so the dimensions of the domain and codomain are the
same, k .
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Finite Dimensional Subspaces & Coordinate Mappings

Suppose S is a finite dimensional subspace of a vector space V and
B = {v⃗1, v⃗2, . . . , v⃗k} is an ordered basis of S. Recall that for vector
x⃗ ∈ S, if

x⃗ = c1v⃗1 + c2v⃗2 + · · ·+ ck v⃗k ,

the the coordinate vector relative to the basis B is

[x⃗ ]B = ⟨c1, c2, . . . , ck ⟩.

The mapping from x⃗ to [x⃗ ]B is a linear transformation. To refer to the
transformation to go back from [x⃗ ]B to x⃗ , we’ll write

[
[x⃗ ]B

]−1
= x⃗ , that is

[
⟨c1, c2, . . . , ck ⟩

]−1
B = c1v⃗1 + c2v⃗2 + · · ·+ ck v⃗k .

We’re going to call this process, x⃗ 7→ [x⃗ ]B, of going from x⃗ to [x⃗ ]B a
coordinate mapping.
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Examples

Consider a simple example. Let S = P2 with ordered basis
B =

{
1, x , x2}. Find

1. [p]B if p(x) = 2x2 − 4x + 5

2.
[
⟨−4,3,12⟩

]−1
B

3.
[
6x − 3x2 + 19

]
B

July 12, 2025 27 / 101



Examples
Consider a slightly more complicated example. Let

S =

{[
a 0
0 d

] ∣∣∣a,d ∈ R
}

. This is the subspace of M2×2 matrices all

having zero off the main diagonal. Consider the basis

B =

{[
1 0
0 0

]
,

[
1 0
0 1

]}
.

Find[[
7 0
0 2

]]
B
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Examples

S =

{[
a 0
0 d

] ∣∣∣a,d ∈ R
}
, B =

{[
1 0
0 0

]
,

[
1 0
0 1

]}
.

Find

[⟨4,−1⟩]−1
B
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Working with Coordinate Vectors
Let S be a finite dimensional subspace of some vector space V , and
let B = {v⃗1, v⃗2, . . . , v⃗k} be an ordered basis for S.

Goal: We want to understand a linear transformation T : S → S.

Process:

▶ Pass to coordinate vectors in Rk using the coordinate mapping [·]B.

▶ Find a transformation TB : Rk → Rk that does what T does in Rk . This
means we have to find the right matrix AB.

▶ Do the transformation TB : Rk → Rk on vectors in Rk using matrix
multiplication.

▶ Pass from coordinate vectors back to the images under T (the vectors in
S) using the inverse of the coordinate mapping [·]−1

B .

Note: The dot in [·]B is just a place holder. It just means something goes
there.
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Figure: Schematic for construction of T = [·]−1
B ◦ TB ◦ [·]B.

TB will have standard matrix AB which we can call the matrix of the
linear transformation T with respect to the ordered basis B.

To make the notation less complicated, we’ll drop the B as long as the context
is clear. That is we’ll write[

·
]

in place of
[
·
]
B, and A instead of AB.
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The Matrix A for TB : Rk → Rk

For x⃗ ∈ S
T (x⃗) =

[
A[x⃗ ]

]−1

where A is the k × k matrix whose columns are the coordinate vectors
of the images of the basis elements under T .

Colj(A) =
[
T (v⃗j)

]
. (the v⃗j ’s are the basis vectors)

1. Put the basis elements from B into T .

2. Write their coordinate vectors relative to B.

3. Make these the columns of a matrix A.

4. Do whatever we want with A.
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Theorem

Let S be a finite dimensional subspace of a vector space V and B =
{v⃗1, . . . , v⃗k} be an ordered basis for S. Let T : S → S be a linear
transformation and let A be the matrix of T with respecta to the ordered
basis B. Then

1. For any vector y⃗ ∈ range (T ), T (x⃗) = y⃗ if and only if A [x⃗ ] = [y⃗ ].

2. The set of vectors {y⃗1, y⃗2, . . . , y⃗p} is a basis for range (T ) if and
only if the set of vectors {[y⃗1] , [y⃗2] , . . . , [y⃗p]} is a basis for CS (A).

3. The set of vectors {x⃗1, x⃗2, . . . , x⃗q} is a basis for ker (T ) if and only
if the set of vectors {[x⃗1] , [x⃗2] , . . . , [x⃗q]} is a basis for N (A).

4. For any integer n ≥ 1 and any x⃗ ∈ S, T n (x⃗) = [An [x⃗ ]]−1.

aColj(A) =
[
T (v⃗j)

]
.
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Example: P3 =
{

p0 + p1x + p2x2 + p3x3 |p0,p1,p2,p3 ∈ R
}

Let D : P3 → P3, with D(f ) = f ′. We can use the ordered basis

B =
{

1, x , x2, x3} .

Identify the matrix A with respect to the basis B for D.

July 12, 2025 34 / 101



D : P3 → P3, with D(f ) = f ′ B =
{

1, x , x2, x3} .
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D : P3 → P3, with D(f ) = f ′ B =
{

1, x , x2, x3} , A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Let p(x) = p0 + p1x + p2x2 + p3x3. Find D(p) by

1. finding [p]

2. then finding A[p].

3. then finding D(p) =
[
A[p]

]−1.
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D : P3 → P3, with D(f ) = f ′ B =
{

1, x , x2, x3} A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Identify range(D) and ker(D).

1. range(T ) has basis
{

y⃗1, y⃗2, . . . , y⃗p
}

if CS(A) has basis
{[

y⃗1
]
,
[
y⃗2
]
, . . . ,

[
y⃗p

]}
2. ker(T ) has basis

{
x⃗1, x⃗2, . . . , x⃗q

}
if N (A) has basis

{[
x⃗1
]
,
[
x⃗2
]
, . . . ,

[
x⃗q

]}
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D : P3 → P3, with D(f ) = f ′ B =
{

1, x , x2, x3} A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


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D : P3 → P3, with D(f ) = f ′ B =
{

1, x , x2, x3} A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Find the vectors p in P3 such that D(p) = 2x2 − 3x + 4. In the language of
calculus, this is the same as finding all solutions to

∫
(2x2 − 3x + 4)dx .
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Example
Let S = Span{e2x , xe2x} be the subspace of C∞(R) with ordered basis
B = {e2x , xe2x}, and let D : S → S be the derivative transformation
D(f ) = f ′. Find the matrix A with respect to the basis, and use it to
evaluate∫

xe2x dx .

That is, find all vectors f in S such that D(f ) = xe2x .
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functions are not elements of S.



S = Span{e2x , xe2x}, D(f ) = f ′ A =

[
2 1
0 2

]
It’s not too hard to find that A4 =

[
16 32

0 16

]
. Find f (4)(x) if

f (x) = 4e2x − 3xe2x .

Turns out that An =

[
2n n(2n−1)
0 2n

]
.
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