July 14 Math 3260 sec. 51 Summer 2025

5.5 Compositions & Similarity

Suppose $S:R^n\to R^p$ and $T:R^p\to R^m$ are linear transformations, then we can ask about the composition

$$T \circ S : \mathbb{R}^n \to \mathbb{R}^m$$
.

$$(T \circ S)(\vec{x}) = T(S(\vec{x})) = T(A_s \vec{x}) = A_r (A_s \vec{x})$$

Suppose

$$S(\vec{x}) = A_S \vec{x}$$
, and $T(\vec{y}) = A_T \vec{y}$.

How is the standard matrix for the composition related to the standard matrices of S and T?

This gives the primary motivation for the way matrix multiplication is defined.

Matrix Multiplication is Composition

$$A_T A_S \sim m \times n$$

Figure: \vec{x} is mapped from R^n to R^p , then $A_S \vec{x}$ is mapped from R^p to R^m . The composition maps from R^n to R^m .

$$S: R^{n} \longrightarrow R^{p} \implies A_{S} \sim p \times n$$

$$T: R^{p} \longrightarrow R^{m} \implies A_{T} \sim m \times p$$

$$T \circ S: R^{n} \longrightarrow R^{m} \implies A_{T}A_{S} \sim m \times n$$

Example

Suppose that $S: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear transformation

$$S(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2, 2x_1 + x_2 + x_3 \rangle$$

and suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is the linear transformation

$$T\left(\langle x_1,x_2\rangle\right)=\langle -x_1,3x_1-x_2,-2x_1+3x_2\rangle$$
.

Find the standard matrix for the composition $T \circ S$.

The final motive usual be
$$3\times3$$
.

Find A_{S} and A_{T}
 $S(\vec{e}_{1}) = \{2,2\}$
 $S(\vec{e}_{2}) = \{1,1\}$
 $S(\vec{e}_{3}) = \{0,1\}$
 $T(\vec{e}_{1}) = \{0,1\}$
 $A_{T} = \begin{bmatrix} -1 & 0 \\ 3 & -1 \\ -2 & 3 \end{bmatrix}$
 $T(\vec{e}_{2}) = \{0,-1,3\}$

For TOS the nation A Tos = AT As

$$A_{T \circ S} : A_{\tau} A_{S} = \begin{bmatrix} -1 & 0 \\ 3 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & -1 & 0 \\ 4 & 2 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$

Reflection in Line Through the Origin

Figure: We want a transformation T to reflect a vector through a line through the origin that makes an angle θ with the x_1 -axis.

We'll do this in three steps.

Start w/ Line & Vector

Figure: The line L makes an angle θ with respect to the x_1 -axis. We want to reflect the vector \vec{x} through it.

Apply:
$$R_{-\theta}(\vec{x}) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \vec{x}$$
, call this \vec{y} , i.e., $\vec{y} = R_{-\theta}(\vec{x})$

July 12, 2025

6/10

Rotate θ Clockwise

Figure: Rotate through θ clockwise using $R_{-\theta}$. L becomes the x_1 -axis.

Next apply:
$$P_{x_1}(\vec{y}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \vec{y}$$
, call this \vec{z} , i.e., $\vec{z} = P_{x_1}(\vec{y})$

July 12, 2025

Reflect Through x_1 -axis

Figure: Reflect through the x_1 -axis using the Reflection transformation P_{x_1} .

Finally apply:
$$R_{\theta}(\vec{z}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \vec{z}$$
, this is $T(\vec{x})$, i.e., $T(\vec{x}) = R_{\theta}(\vec{z})$

Rotate θ Counter Clockwise

Figure: Then we rotation back through θ in the counterclockwise direction by applying the transformation R_{θ} .

The total transformation is

$$T = R_{\theta} \circ P_{\mathsf{X}_1} \circ R_{-\theta}, \qquad (\text{recall } R_{\theta} = R_{-\theta}^{-1})$$

Similarity

Our complicated reflection through a line that was not horizontal can be done with the "simple" reflection through a horizontal line. Note that the matrix for this is the product

$$A_T = A_{-\theta}^{-1} A_{P_{x_1}} A_{-\theta}.$$

Note that the form of this is a matrix sandwiched between a matrix and its inverse. The complicated projection T is said to be **similar** to the simple projection P_{x_1} .

Note that this only makes sense if we're mapping from R^n back to itself.

Similarity

A linear transformation $T: R^n \to R^n$ is said to be **similar** to a linear transformation $S: R^n \to R^n$ if there exists an invertible linear transformation $P: R^n \to R^n$ such that

$$T=P^{-1}\circ S\circ P.$$

Likewise, an $n \times n$ matrix A is said to be **similar** to an $n \times n$ matrix B, if there exists an invertible $n \times n$ matrix C such that

$$A = C^{-1}BC$$
.

Note that this can be viewed either direction since $T = P^{-1} \circ S \circ P$ and $A = C^{-1}BC$ imply

$$S = P \circ T \circ P^{-1}$$
 and $B = CAC^{-1}$

Using Similarity

Consider the matrix $A = \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}$. Suppose we want to compute A^9 .

$$A^{9} = AAAAAAAAA = \underbrace{\begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix} \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix} \cdots \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}}_{\text{nine factors of } A.}$$

Compare that to computing
$$D^9$$
 if $D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$.

$$D^3 = DD = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$D^3 = D^2D = \begin{bmatrix} (-2)^2 & 0 \\ 0 & 1^2 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (-7)^3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\vdots$$

$$D^4 = \begin{bmatrix} (-7)^4 & 0 \\ 0 & 1 \end{bmatrix}$$

July 12, 2025

$$A = \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}, \quad D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \quad C^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

What if we know that $D = C^{-1}AC$ which means that $A = CDC^{-1}$?

Show that $D^2 = C^{-1}A^2C$ and $D^3 = C^{-1}A^3C$.

$$D^2 = DD = (\tilde{c}'AC)(\tilde{c}'AC) = \tilde{c}'A(c\tilde{c}')AC$$

= $\tilde{c}'AIAC = \tilde{c}'AAC = \tilde{c}'A^2C$

$$D^{3} = D^{2}D = (c^{2}A^{2}C)(c^{2}AC) = c^{2}A^{2}(c^{2}C)AC$$

= $c^{2}A^{2}D + c^{2}A^{2}C = c^{2}A^{2}AC = c^{2}A^{2}C$

Powers of Similar Matrices

If *A* and *B* are similar matrices, with $B = C^{-1}AC$ for some invertible matrix *C*, then for every integer $n \ge 1$

$$B^n = C^{-1}A^nC.$$

This means that $A^9 = CD^9C^{-1}$. That's two matrix multiplications instead of eight matrix multiplications.

$$A = \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}, D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} C^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

$$A^{9} = C D^{9} C^{1} D^{4} = \begin{bmatrix} (-2)^{9} & 0 \\ 0 & (9)^{9} \end{bmatrix} = \begin{bmatrix} -512 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{9} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -512 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -512 & 512 \\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3(-5n) - 2 & 3(512) + 3 \\ 2(-512) - 2 & 2(512) + 3 \end{bmatrix} = \begin{bmatrix} -1538 & 1539 \\ -1026 & (027) \end{bmatrix}$$

◆ロト ◆個ト ◆夏ト ◆夏ト 夏 めのの

5.6 Linear Transformations for General Vector Spaces

Linear Transformation

Suppose V and W are vector spaces. A **linear transformation** from V to W is a function $T:V\to W$ such that for each pair of vectors \vec{x} and \vec{y} in V and for any scalar c

1.
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$
, and

$$2. T(c\vec{x}) = cT(\vec{x}).$$

The only difference is that we've replaced \mathbb{R}^n and \mathbb{R}^m with V and W.

Example

Consider the vector spaces $C^1(R)$ and $C^0(R)$. The transformation

$$D: C^1(R) \rightarrow C^0(R)$$

defined by

$$D(f) = f'$$

is a linear transformation.

Reroll
$$(f+g)' = f'+g'$$

 $D(f+g) = D(f) + D(g)$
 $(cf)' = cf'$
 $D(cf) = cD(f)$

July 12, 2025

Theorem

If V and W are vector spaces and $T:V\to W$ is a linear transformation, then $T(\vec{0}_V)=\vec{0}_W$.

Proof: Let
$$\vec{\nabla}$$
 be any vector $\vec{\nabla}$ as let $\vec{\nabla} = \vec{\nabla}(\vec{\nabla})$.
So $\vec{\nabla}$ is some vector in $\vec{\nabla}$. Recall $\vec{\nabla}$ \vec

$$T(\vec{0}_{1}) = T(\vec{0}_{1}) = OT(\vec{0}) = O\vec{0} = \vec{0}_{1}$$

Range & Kernel

If V and W are vector spaces and $T:V\to W$ is a linear transformation, we define the **range** of T to be

range
$$(T) = \{ \vec{y} \in W \mid T(\vec{x}) = \vec{y} \text{ for at least one } \vec{x} \in V \}$$

and we define the **kernel** (also called **null space**) of T to be

$$\ker\left(T\right) = \left\{ \vec{x} \in V \mid T\left(\vec{x}\right) = \vec{0}_{W} \right\}.$$

Theorem

Let V and W be vector spaces and $T: V \to W$ be a linear transformation. Then range(T) is a subspace of W and ker(T) is a subspace of V.

$$\dim(\operatorname{range}(T)) + \dim(\ker(T)) = \dim(V).$$

Invertibility

Suppose that V and W are vector spaces and suppose that T: $V \to W$ is a linear transformation. We say that T is **invertible** if $\operatorname{range}(T) = W$ and T is also one–to–one. If T is invertible, then the **inverse** of T is defined to be the function $T^{-1}: W \to V$ defined by

 $T^{-1}\left(\vec{y}
ight) = \vec{x}$ where \vec{x} is the unique vector in V such that $T\left(\vec{x}
ight) = \vec{y}$.

The equation $\dim(\operatorname{range}(T)) + \dim(\ker(T)) = \dim(V)$ implies that T can only be invertible if $\dim(V) = \dim(W)$. Of course, even if $\dim(V) = \dim(W)$ a transformation may not be invertible.

It is also the case that if T is invertible, then $T^{-1}: W \to V$ is also a linear transformation.

Example $D: C^1(R) \to C^0(R)$ where D(f) = f'.

Let's show that D is not invertible¹.

1. If
$$f(x) = \cos(x)$$
, find $D(f) = -\sin(x)$

2. If
$$g(x) = \cos(x) - 3$$
, find $D(g) = -$

- 3. How many solutions are there to the equation $D(f) = -\sin(x)$? Infinitely many frambe f(x) = Cosx+C for any scalar
- 4. Why does the above imply that *D* is not invertible?

5. What is $\ker(D)$? $f \in \ker(D)$ if D(f) = Z(x) = 0The kernel contains all constant functions

¹The Fundamental Theorem of Calculus does indicate that $range(D) = C^0(R)$. July 12, 2025

Powers of $T: V \rightarrow V$

If $T: V \to V$ is a linear transformation, we can compose T with itself and represent such compositions as "power."

$$T^2 = T \circ T$$

$$T^3 = T \circ T \circ T$$

$$\vdots$$

For example, consider $D: C^{\infty}(R) \to C^{\infty}(R)$ defined by D(f) = f'. Then

$$D^{2}(f) = f'', \quad D^{3}(f) = f''', \quad \dots \quad D^{n}(f) = f^{(n)}.$$

July 12, 2025

Remember this Lemma?

Lemma

Suppose that S is a subspace of a vector space V and $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_k\}$ is an ordered basis of S. If \vec{x} and \vec{y} are any two vectors in S and c is any scalar then

- 1. $[\vec{x} + \vec{y}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{B}} + [\vec{y}]_{\mathcal{B}}$ and
- $2. [c\vec{x}]_{\mathcal{B}} = c[\vec{x}]_{\mathcal{B}}.$

This means that the transformation from S to R^k that maps \vec{x} in S to the coordinate vector $[\vec{x}]_{\mathcal{B}}$ in R^k is a **linear transformation**!

Plus, $\dim(S) = k$ because there are k basis elements, and $\dim(R^k) = k$, so the dimensions of the domain and codomain are the same, k.

Finite Dimensional Subspaces & Coordinate Mappings

Suppose S is a finite dimensional subspace of a vector space V and $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is an ordered basis of S. Recall that for vector $\vec{x} \in S$. if

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k,$$

the the coordinate vector relative to the basis \mathcal{B} is

$$[\vec{x}]_{\mathcal{B}} = \langle c_1, c_2, \ldots, c_k \rangle.$$

The mapping from \vec{x} to $[\vec{x}]_{\mathcal{B}}$ is a linear transformation. To refer to the transformation to go back from $[\vec{x}]_{\mathcal{B}}$ to \vec{x} , we'll write

$$\left[[\vec{x}]_{\mathcal{B}} \right]^{-1} = \vec{x}, \quad \text{that is} \quad \left[\langle c_1, c_2, \dots, c_k \rangle \right]_{\mathcal{B}}^{-1} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k.$$

We're going to call this process, $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$, of going from \vec{x} to $[\vec{x}]_{\mathcal{B}}$ a **coordinate mapping**.

Examples

Consider a simple example. Let $S = \mathbb{P}_2$ with ordered basis $\mathcal{B} = \{1, x, x^2\}$. Find

2.
$$[\langle -4,3,12 \rangle]_{\mathcal{B}}^{-1} = -4(1) + 3x + 12x^{2} = -4 + 3x + 12x^{2}$$

3.
$$[6x - 3x^2 + 19]_{\mathcal{B}} = \langle 19, 6, -3 \rangle$$

Examples

Consider a slightly more complicated example. Let

$$S = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \mid a, d \in R \right\}$$
. This is the subspace of $M_{2 \times 2}$ matrices all having zero off the main diagonal. Consider the basis

$$\mathcal{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Find

$$\begin{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 2 \end{bmatrix} \end{bmatrix}_{\mathcal{B}}$$

$$\begin{bmatrix} \begin{bmatrix} 7 & 2 \end{bmatrix} \end{bmatrix}_{\infty} = \langle C_1, C_2 \rangle \text{ where}$$

$$\begin{bmatrix} 7 & 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 & 0 \end{bmatrix} + C_2 \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} C_1 + C_2 & 0 \\ 0 & C_2 \end{bmatrix}$$

$$C_2 : 2 \qquad C_1 = 7 - C_2 = 5$$

Examples

$$S = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right] \; \middle| \; a,d \in R \right\}, \quad \mathcal{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Find

$$[\langle 4, -1 \rangle]_{\mathcal{B}}^{-1} = \mathsf{Y} \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \langle -1 \rangle \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \left[\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \right] \right]$$

July 12, 2025

Working with Coordinate Vectors

Let S be a finite dimensional subspace of some vector space V, and let $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be an ordered basis for S.

Goal: We want to understand a linear transformation $T: S \rightarrow S$.

Process:

- ▶ Pass to coordinate vectors in R^k using the coordinate mapping $[\cdot]_{\mathcal{B}}$.
- ▶ Find a transformation $T_{\mathcal{B}}: R^k \to R^k$ that does what T does in R^k . This means we have to find the right matrix $A_{\mathcal{B}}$.
- ▶ Do the transformation $T_{\mathcal{B}}: R^k \to R^k$ on vectors in R^k using matrix multiplication.
- ▶ Pass from coordinate vectors back to the images under T (the vectors in S) using the inverse of the coordinate mapping $[\cdot]_{B}^{-1}$.

Note: The dot in $[\cdot]_{\mathcal{B}}$ is just a place holder. It just means *something goes there*.

Figure: Schematic for construction of $T = [\cdot]_{\mathcal{B}}^{-1} \circ T_{\mathcal{B}} \circ [\cdot]_{\mathcal{B}}$.

 $T_{\mathcal{B}}$ will have standard matrix $A_{\mathcal{B}}$ which we can call the **matrix of the** linear transformation T with respect to the ordered basis \mathcal{B} .

To make the notation less complicated, we'll drop the $\ensuremath{\mathcal{B}}$ as long as the context is clear. That is we'll write

 $[\cdot]$ in place of $[\cdot]_{\mathcal{B}}$, and A instead of $A_{\mathcal{B}}$.

The Matrix A for $T_B: R^k \to R^k$

For $\vec{x} \in S$

$$T(\vec{x}) = \left[A[\vec{x}]\right]^{-1}$$

where A is the $k \times k$ matrix whose columns are the coordinate vectors of the images of the basis elements under T.

$$Col_j(A) = [T(\vec{v}_j)].$$
 (the \vec{v}_j 's are the basis vectors)

- 1. Put the basis elements from \mathcal{B} into T.
- 2. Write their coordinate vectors relative to \mathcal{B} .
- 3. Make these the columns of a matrix A.
- 4. Do whatever we want with A.

Theorem

Let S be a finite dimensional subspace of a vector space V and $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_k\}$ be an ordered basis for S. Let $T: S \to S$ be a linear transformation and let A be the matrix of T with respect^a to the ordered basis \mathcal{B} . Then

- 1. For any vector $\vec{y} \in \text{range}(T)$, $T(\vec{x}) = \vec{y}$ if and only if $A[\vec{x}] = [\vec{y}]$.
- 2. The set of vectors $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_p\}$ is a basis for range (T) if and only if the set of vectors $\{[\vec{y}_1], [\vec{y}_2], \dots, [\vec{y}_p]\}$ is a basis for $\mathcal{CS}(A)$.
- 3. The set of vectors $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_q\}$ is a basis for ker (T) if and only if the set of vectors $\{[\vec{x}_1], [\vec{x}_2], \dots, [\vec{x}_q]\}$ is a basis for $\mathcal{N}(A)$.
- 4. For any integer $n \ge 1$ and any $\vec{x} \in S$, $T^n(\vec{x}) = [A^n[\vec{x}]]^{-1}$.

33/101

 $^{{}^{}a}\mathsf{Col}_{j}(A) = \big\lceil T(\vec{v}_{j}) \big
ceil.$

Example:
$$\mathbb{P}_3 = \{p_0 + p_1x + p_2x^2 + p_3x^3 \mid p_0, p_1, p_2, p_3 \in R\}$$

Let $D: \mathbb{P}_3 \to \mathbb{P}_3$, with D(f) = f'. We can use the ordered basis

$$\mathcal{B} = \left\{1, x, x^2, x^3\right\}.$$

Identify the matrix A with respect to the basis \mathcal{B} for D.

$$D(1) = 0$$
 . . read
 $D(x) = 1$ $D(1) = 0$
 $D(x^2) = 2x$
 $D(x^3) = 3x^2$ $0 = 0$

c. need
$$[D(basselements)]$$

 $[D(1)] = [0] = (c_0, c_1, c_2, c_3)$ where
 $0 = c_0(1) + c_1 \times + (z \times^2 + c_3 \times^3)$
 $[D(1)] = (0, 0, 0, 0)$

$$D: \mathbb{P}_3 \to \mathbb{P}_3$$
, with $D(f) = f' \quad \mathcal{B} = \{1, x, x^2, x^3\}$.

$$[D(x_0)] = [3x_0] = (9'0'3'0)$$

$$[D(x_0)] = [x_0] = (9'0'3'0)$$

$$[D(x_0)] = [1] = (10'0'0'0)$$

July 12, 2025 35/101

$$D: \mathbb{P}_3 \to \mathbb{P}_3, \text{ with } D(f) = f' \quad \mathcal{B} = \left\{1, x, x^2, x^3\right\}, \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let
$$p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$$
. Find $D(p)$ by

1. finding
$$[p] = \langle P_9, P_1, P_2, P_3 \rangle$$

2. then finding A[p].

3. then finding
$$D(p) = [A[p]]^{-1}$$
.

then finding
$$D(p) = [A[p]]^{-1}$$
.

$$D(p) = [\langle P_1, ZP_2, 3P_3, 0 \rangle]^{-1} = P_1(1) + 2P_2 \times + 3P_3 \times^2 + 0 \times^3$$

$$= P_1 + 2P_2 \times + 3P_3 \times^2$$

July 12, 2025

$$D: \mathbb{P}_3 \to \mathbb{P}_3, \text{ with } D(f) = f' \quad \mathcal{B} = \{1, x, x^2, x^3\} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\text{Identify range}(D) \text{ and } \ker(D).$$

- 1. $\mathsf{range}(T)$ has basis $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_\rho\}$ if $\mathcal{CS}(A)$ has basis $\{[\vec{y}_1], [\vec{y}_2], \dots, [\vec{y}_\rho]\}$
- 2. $\ker(T)$ has basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_q\}$ if $\mathcal{N}(A)$ has basis $\{[\vec{x}_1], [\vec{x}_2], \dots, [\vec{x}_q]\}$

$$D: \mathbb{P}_3 \to \mathbb{P}_3, \text{ with } D(f) = f' \quad \mathcal{B} = \{1, x, x^2, x^3\} \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

For ker(D) find a basis for N(A).

$$A \stackrel{?}{\times} = 0$$
 (0100) If $\stackrel{?}{\times} = (X_1, X_2, X_3, X_4)$
 $X_2 = X_3 = X_4 = 0$
 $X_1 = 0$

 $\vec{\chi} = (\chi_1, 0, 0, 0) = \chi_1(1, 0, 0, 0) \text{ a besir for } \mathcal{N}(A)$ is $\{(1, 0, 0, 0)\}$.

A basis for Ker (D) is (13.

$$D: \mathbb{P}_3 \to \mathbb{P}_3$$
, with $D(f) = f'$ $\mathcal{B} = \{1, x, x^2, x^3\}$ $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Find the vectors p in \mathbb{P}_3 such that $D(p) = 2x^2 - 3x + 4$. In the language of calculus, this is the same as finding all solutions to $\int (2x^2 - 3x + 4) dx$.

Let
$$q(x) = 2x^2 - 3x + 4$$
, $[3] = (4, -3, 2, 0)$
 $solve$ $A[p] = [q]$ Use $[A | (97)]$
 $\begin{cases} 0 & 1 & 0 & 0 & | & 4 \\ 0 & 0 & 0 & | & -3/2 \\ 0 & 0 & 0 & 0 &$

39/101

Example

Let $S = \operatorname{Span}\{e^{2x}, xe^{2x}\}$ be the subspace of $C^{\infty}(R)$ with ordered basis $\mathcal{B} = \{e^{2x}, xe^{2x}\}$, and let $D: S \to S$ be the derivative transformation D(f) = f'. Find the matrix A with respect to the basis, and use it to evaluate

$$\int xe^{2x} dx.$$

That is, find all vectors f in S such that $D(f) = xe^{2x}$.

we need
$$D(e^{2x})$$
 ad $D(xe^{2x})$
 $D(e^{2x}) = \lambda e^{2x}$ $\left[D(e^{2x})\right] = \langle 2,0\rangle$
 $D(xe^{2x}) = e^{2x} + 2xe^{2x}$ $\left[D(xe^{2x})\right] = \langle 1,2\rangle$
 $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ we can find f

A (f) = (g) when
$$g(x) = xe^{2x}$$

[g]: $(0,1)$

[$\frac{2}{3}\frac{1}{2}$] $(0,1) = (0,1)$

[$\frac{2}{3}\frac{1}{2}$

all vectors in S such that $D(f) = \chi e^{2\chi}$ The constant of integration can't be picked up because constant functions are not elements of S.

$$S = \operatorname{Span}\{e^{2x}, xe^{2x}\}, \quad D(f) = f' \quad A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

It's not too hard to find that $A^4 = \begin{bmatrix} 16 & 32 \\ 0 & 16 \end{bmatrix}$. Find $f^{(4)}(x)$ if $f(x) = 4e^{2x} - 3xe^{2x}$.

The coordinate vector for f is
$$(f) = (4, -3)$$
.

A" $(f) = (64-96, -48) = (-32, -48)$

So $f^{(u)} = (-32, -48)^{-1} = -32e^{-4}8xe^{2x}$

Turns out that
$$A^n = \begin{bmatrix} 2^n & n(2^{n-1}) \\ 0 & 2^n \end{bmatrix}$$
.

《□▶ 《□▶ 《□▶ 《□▶ 《□ 》 (3)