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5.7 Isomorphism of Vector Spaces

We were able to exploit R4 to do operations in P3. Somehow, these spaces
have the same structure. There’s a name for this. It’s called being

isomorphic.

Isomorphic

A vector space V is said to be isomorphic to a vector space W if there
exists an invertible linear transformation T : V → W .

Any invertible linear transformation T : V → W is said to be an iso-
morphism from V onto W .

A coordinate mapping is an isomorphism.
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Some Facts About Isomorphism

1. Any vector space, V , is isomorphic to itself because the identity
transformation E : V → V is an isomorphism from V onto V .

2. If V is isomorphic to W , then W is isomorphic to V . This is
because if T : V → W is an isomorphism that T−1 : W → V is
also an isomorphism. We can say

“V and W are isomorphic to each other.”

3. If V is isomorphic to W and W is isomorphic to X , then V is
isomorphic to X .

4. The symbol “∼=” is sometimes used, as in P3 ∼= R4.
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Theorem

Suppose that V and W are finite-dimensional vector spaces.
Then V and W are isomorphic to each other if and only if
dim (V ) = dim (W ). Specifically, if V and W both have dimen-
sion k (where 1 ≤ k < ∞), then V and W are both isomorphic to
Rk .

Remark: This tells us that no matter what sort of objects a finite
dimensional subspace S of some vector space contains, we can do
stuff using matrices in Rdim(S).
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Example

If M3×2 is isomorphic to Rk , find k .
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Example

Determine whether the given pairs are isomorphic or not.

1. P2 and R2

2. P2 and R3

3. Span{1, x} and Span{e2x ,e3x}

4. M3×3 and R9
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Chapter 6 Eigenstuff
Consider the linear transformation T : R2 → R2 defined by Ax⃗ with

A =

[
5 −1
3 1

]
.

1. Evaluate T (⟨−1,1⟩)

2. Evaluate T (⟨1,3⟩)
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Figure: Plot of standard representations of ⟨−1,1⟩,T (⟨−1,1⟩), ⟨1,3⟩,
T (⟨1,3⟩), ⟨1,−2⟩, and T (⟨1,−2⟩) together.
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Example Continued... A =

[
5 −1
3 1

]
Show that there is a special set of nonzero vectors in R2 with the
property Ax⃗ = 2x⃗ .
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A =

[
5 −1
3 1

]



What are Eigen things?

We’ll focus on linear transformations T : Rn → Rn with square matrix A
such that T (x⃗) = Ax⃗ , and consider equations of the form

Ax⃗ = λx⃗

with λ a scalar and x⃗ a nonzero vector. We’ll call scalars like λ
eigenvalues and vectors like x⃗ eigenvectors. We’ll also consider
things like eigenspaces and eigenbases.

Questions:
▶ Does a matrix have such scalars and vectors?
▶ How would we find them?
▶ What do the tell us about a matrix?
▶ What can we do with them?
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Determinant
The determinant is a scalar valued function on Mn×n. The determinant
is related to various properties of a matrix, most notably invertibility.

2 × 2 Determinant

Let A =

[
a b
c d

]
. The determinant of A, denoted det(A), is the

number
det(A) = ad − bc.

Example: Evaluate the determinant of each matrix.

A =

[
5 −1
3 1

]
B =

[
3 −1
3 −1

]
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Submatrices

Let A = [aij ] be an n × n matrix. The notation

Aij

will denote the (n−1)×(n−1) matrix obtained from A by removing
the i th row and the j th column.

For example, if A = [aij ] is a 3 × 3 matrix, we can form nine different 2 × 2
matrices Aij .

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 → A23 =

[
a11 a12
a31 a32

]
.

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 → A31 =

[
a12 a13
a22 a23

]
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Minors & Cofactors

Let A be an n × n matrix, n ≥ 2. The ij th minor of A is the determinant
of the (n − 1)× (n − 1) matrix Aij . That is, det(Aij) is the ij th minor of A.

Let A be an n × n matrix, n ≥ 2.

ij th cofactor of A = (−1)i+j det(Aij).

n × n Determinant

Let A =
[
aij
]

be an n × n matrix. The determinant of A, denoted det(A)
is given by

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j). (1)

The sum in equation (1) is called a cofactor expansion across the first
row of A.
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Cofactor Signs

The factor (−1)i+j gives an alternating sign based on the position of aij
in the matrix. 

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

 .
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Example

Find det(A) if A =

 1 2 −1
0 3 2
1 −1 0

.
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Alternative Cofactor Expansions

We can actually take a determint by a cofactor expansion across any
row. Fix a number for i (between 1 and n).

det(A) =
n∑

j=1

(−1)i+jaij det(Aij). (2)

Similarly, we can compute det(A) using a cofactor expansion down any
columns. Fix a number j (between 1 and n).

det(A) =
n∑

i=1

(−1)i+jaij det(Aij). (3)
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Example

Find det(A) if A =

 1 2 −1
0 3 2
1 −1 0

 by cofactor expansion across the

second row and down the third column.
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A =

 1 2 −1
0 3 2
1 −1 0


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Properties of the Determinant

Evaluate det(A) if A =


2 0 −1 4
4 0 5 −3

−6 0 1 1
2 0 13 −1

.
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Triangular Matrices

A matrix A = [aij ] is called upper triangular if aij = 0 for all i > j , and it’s called lower
triangular if aij = 0 for all i < j . As the names suggest, upper triangular matrices have
all their nonzero entries on or above the main diagonal, and lower triangular matrices
have all their nonzero entries on or below the main diagonal.


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann




a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

...
...

...
. . .

...
an1 an2 an3 · · · ann


upper triangular lower triangular

A matrix that is both upper triangular and lower triangular is called a diagonal matrix.


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann


diagonal matrix
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Since a cofactor expansion is the same across any row or down any
column...

Theorem

Let A be an n × n matrix.

1. If 0⃗n is a row vector or a column vector of A, then
det(A) = 0.

2. det(AT ) = det(A).

3. If A is a triangular matrix (upper, lower or diagonal), the
det(A) is the product of the diagonal entries

det(A) = a11a22 · · · ann
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Row Operations

Suppose A is an n × n matrix.

▶ If B is obtained from A by performing one row scaling, kRi → Ri ,
then det(B) = k det(A).

▶ If B is obtained from A by performing one row swap, Ri ↔ Rj ,
then det(B) = − det(A).

▶ If B is obtained from A by performing one row replacement,
kRi + Rj → Rj , then det(B) = det(A).

Products

If A and B are n × n matrices, then

det(AB) = det(A) det(B)
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Examples
Find det(A), det(B), det(AB) and det(BA) where A =

[
5 −1
3 1

]
, and

B =

[
2 1
0 2

]
.
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Example
Suppose A is an invertible n × n matrix. Show that
det(A−1) = (det(A))−1.
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6.2 Eigenvalues & Eigenvectors

Definition

Let A be an n × n matrix. An eigenvalue of A is a scalar λ for
which there exists a nonzero vector x⃗ such that

Ax⃗ = λx⃗ . (4)

For a given eigenvalue λ, a nonzero vector x⃗ satisfying equa-
tion (4) is called an eigenvector corresponding to the eigenvalue
λ.

Remark 1: Note that eigenvectors are, by definition, nonzero vectors.

Remark 2: Eigenvalues are not restricted and can be positive,
negative or zero.
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Example
Last time, we saw that if we started knowing x⃗ = ⟨−1,1⟩ is an

eigenvector of A =

[
−2 2

7 3

]
, we can use the equation

Ax⃗ = λx⃗

to find the eigenvalue λ = −4.

We also found that if we know that λ = 5 is an eigenvalue, we can use
the same equation, Ax⃗ = λx⃗ , to find the eigenvectors x⃗ = t⟨2,7⟩ with
t ̸= 0.

Questions:
▶ How do we find them without knowing any λ values or vectors up

front?
▶ Does a matrix A always have eigenvalues and eigenvectors?
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No Eigenvalues or Eigenvectors

Figure: The matrix A45◦ = 1√
2

[
1 −1
1 1

]
rotates each vector 45◦ counterclockwise.

Question: Could A45◦ x⃗ = λx⃗ for any nonzero vector x⃗ and some
number λ?

July 14, 2025 28 / 58



The Characteristic Equation
How do we actually find these numbers and vectors? We actually start
by finding the eigenvalues. Let’s derive a way to find λ such that

Ax⃗ = λx⃗

July 14, 2025 29 / 58



Definition

Let A be an n × n matrix. The function

PA(λ) = det(A − λIn)

is called the characteristic polynomial of the matrix A. The
equation

PA(λ) = 0, i.e., det(A − λIn) = 0

is called the characteristic equation of the matrix A.

A the name suggests, PA(λ) is always a polynomial in λ. The degree
matches the size of the matrix, n, and the leading coefficient is 1 if n is
even and −1 if n is odd.
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Example

Find the characteristic polynomial of A =

 4 3 −1
1 2 2
0 0 −3

.
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Theorem

Let A be an n×n matrix, and let PA(λ) be the characteristic polynomial
of A. The number λ0 is an eigenvalue of A if and only if PA(λ0) = 0. That
is, λ0 is an eigenvalue of A if and only if it is a root of the characteristic
equation det(A − λIn) = 0.

Finding the eigenvalues can be challenging if A is a large matrix (high degree
polynomial). Once an eigenvalue is known, we can find eigenvectors by
solving the homogeneous equation

(A − λIn)x⃗ = 0⃗n

using row reduction. This means that the eigenvectors are the nonzero

vectors in N (A − λIn).
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Example A =

 4 3 −1
1 2 2
0 0 −3


The characteristic polynomial was

PA(λ) = −(3 + λ)(λ− 5)(λ− 1) = −λ3 + 3λ2 + 13λ− 15.

Find an eigenvector for each eigenvalue.
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A =

 4 3 −1
1 2 2
0 0 −3


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A =

 4 3 −1
1 2 2
0 0 −3


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Eigenspaces & Eigenbases

Definition

Let A be an n × n matrix and λ0 be an eigenvalue of A. The
eigenspace corresponding to the eigenvalue λ0 is the set

EA(λ0) =
{

x⃗ ∈ Rn | Ax⃗ = λ0x⃗
}
= N (A − λ0In).

An eigenspace is a null space, so it’s a subspace of Rn. We can find a
basis the way we regularly find the basis for a null space.

An eigenspace is all of the eigenvectors for a given eigenvalue with
the zero vector thrown in to make a subspace.
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Example

Let A =

 2 0 0
0 2 1
0 0 4

 and B =

 2 1 0
0 2 1
0 0 4

. Find the characteristic

polynomials PA(λ) and PB(λ).
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A =

 2 0 0
0 2 1
0 0 4

 and B =

 2 1 0
0 2 1
0 0 4

 PA(λ) = PB(λ) = (2 − λ)2(4 − λ)

Find bases for the eigenspaces EA(2) and EB(2).
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 2 1 0
0 2 1
0 0 4

 P



Two Types of Multiplicities

Geometric Multiplicity

Let A be an n × n matrix and λ0 be an eigenvalue of A. The dimension
of the eigenspace, dim(EA(λ0)), corresponding to λ0 is called the geo-
metric multiplicity of λ0.

To determine the geometric multiplicity, we have to find the dimension of the
eigenspace—i.e., how many free variables are there in the equation

(A − λ0In)x⃗ = 0⃗n.
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Algebraic Multiplicity

Let A be an n × n matrix and λ0 be an eigenvalue of A. The algebraic
multiplicity of λ0 is its multiplicity as the root of the characteristic equa-
tion PA(λ) = 0. That is, if (λ− λ0)

k is a factor of PA(λ) and (λ− λ0)
k+1

is not a factor of PA(λ), then the algebraic multiplicity of λ0 is k .

If the characteristic polynomial was (3 − λ)4(7 − λ)2(−2 − λ), the eigenvalues
with their algebraic multiplicities would be

λ = 3 algebraic multiplicity 4,

λ = 7 algebraic multiplicity 2,
λ = −2 algebraic multiplicity 1.

The algebraic multiplicity is always greater than or equal to the geomet-
ric multiplicity.
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Example

A =

 2 0 0
0 2 1
0 0 4

 and B =

 2 1 0
0 2 1
0 0 4


PA(λ) = (2 − λ)2(4 − λ) and PB(λ) = (2 − λ)2(4 − λ).

Both have eigenvalue λ = 2 with algebraic multiplicity of two.

{⟨1,0,0⟩, ⟨0,1,0⟩}︸ ︷︷ ︸
basis for EA(2)

{⟨1,0,0⟩}︸ ︷︷ ︸
basis for EB(2)

λ = 2 has geometric multiplicity two as an eigenvalue of A and it has a
geometric multiplicity one as an eigenvalue of B.

If a matrix has enough linearly independent eigenvectors, we may be
able to build a basis for Rn out of eigenvectors. So the geometric mul-
tiplicity is of interest as is their linear independence.
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Linear Independence of Eigenvectors
Suppose A has distinct eigenvalues, λ1 and λ2 with corresponding
eigenvectors x⃗1 and x⃗2. Show that {x⃗1, x⃗2} is linearly independent.
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Theorem

Let {x⃗1, x⃗2, . . . , x⃗k} be a set of eigenvectors of an n × n matrix
corresponding to distinct eigenvalues λ1, λ2, . . . , λk . Then the set
{x⃗1, x⃗2, . . . , x⃗k} is linearly independent.

Note

If A is an n × n matrix with n distinct eigenvalues, then A has a
set of n linearly independent eigenvectors.
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Definition

Let A be an n × n matrix. If A has n linearly independent eigen-
vectors, x⃗1, . . . , x⃗n (combined across all eigenvalues), then the
set EA = {x⃗1, . . . , x⃗n} is a basis for Rn called an eigenbasis for
A.

Suppose A is n × n

▶ If A has n distinct eigenvalues, it is guaranteed to have an
eigenbasis.

▶ If A has fewer than n distinct eigenvalues, then

▶ it has an eigenbasis if the sum of all geometric multiplicities
is n;

▶ it doesn’t have an eigenbasis if the sum of all geometric
multiplicities is smaller than n.
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Example

Find an eigenbasis for A =

[
−2 8

1 5

]
or show that it is not possible.
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