July 18 Math 3260 sec. 51 Summer 2023 Section 6.1: Inner Product, Length, and Orthogonality

Definition: Inner (a.k.a. Scalar) Product

For vectors **u** and **v** in \mathbb{R}^n we define the **inner product** of **u** and **v** (also called the **dot product**) by the **matrix product**

$$\mathbf{u}^{\mathsf{T}}\mathbf{v} = \begin{bmatrix} u_1 \ u_2 \ \cdots \ u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

There are several notations for this including

$$\mathbf{u}^T \mathbf{v}, \quad \mathbf{u} \cdot \mathbf{v}, \quad \text{and} \quad \langle \mathbf{u}, \mathbf{v} \rangle$$

July 17, 2023

1/61

Properties of the Inner Product

Theorem:

For each **u**, **v** and **w** in \mathbb{R}^n and scalar *c*

i. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

ii.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

iii.
$$\mathbf{u} \boldsymbol{\cdot} (c\mathbf{v}) = (c\mathbf{u}) \boldsymbol{\cdot} \mathbf{v} = c(\mathbf{u} \boldsymbol{\cdot} \mathbf{v})$$

iv. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

<ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ July 17, 2023 2/61

The Norm, Unit Vectors & Normalizing

Definition

The **norm** of the vector **v** in \mathbb{R}^n is the nonnegative number $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Definition

A vector **u** in \mathbb{R}^n for which $||\mathbf{u}|| = 1$ is called a **unit vector**.

Theorem

For vector **v** in \mathbb{R}^n and scalar $c ||c\mathbf{v}|| = |c|||\mathbf{v}||$.

If $\mathbf{v} \neq \mathbf{0}$, then we can **normalize** to get a unit vector. $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector parallel to \mathbf{v} .

July 17, 2023 3/61

Distance in \mathbb{R}^n

Definition:

For vectors \boldsymbol{u} and \boldsymbol{v} in $\mathbb{R}^n,$ the distance between \boldsymbol{u} and \boldsymbol{v} is denoted by

 $\mathsf{dist}(\boldsymbol{u},\boldsymbol{v}),$

and is defined by

 $\mathsf{dist}(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^2 between points (x_0 , y_0) and (x_1 , y_1),

$$d = \sqrt{(y_1 - y_0)^2 + (x_1 - x_0)^2}.$$

• • • • • • • • • • •

July 17, 2023

4/61

Orthogonality & The Pythagorean Theorem

Definition:

Two vectors are **u** and **v** orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

The Pythagorean Theorem:

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 かへぐ July 17, 2023 5/61

Orthogonal Complement

Definition:

Let *W* be a subspace of \mathbb{R}^n . A vector **z** in \mathbb{R}^n is said to be **or-thogonal to** *W* if **z** is orthogonal to every vector in *W*. That is, if

 $\mathbf{z} \cdot \mathbf{w} = \mathbf{0}$ for every $\mathbf{w} \in W$.

Definition:

Given a subspace W of \mathbb{R}^n , the set of all vectors orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (read as "W perp").

$$W^{\perp} = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{w} = 0 \quad \text{for every} \quad \mathbf{w} \in W
ight\}$$

Theorem:

If *W* is a subspace of \mathbb{R}^n , then W^{\perp} is a subspace of \mathbb{R}^n .

This is readily proved by appealing to the properties of the inner product. In particular

 $\mathbf{0} \cdot \mathbf{w} = \mathbf{0}$ for any vector \mathbf{w} $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ and $(c\mathbf{u}) \cdot \mathbf{w} = c\mathbf{u} \cdot \mathbf{w}.$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Example
Let
$$W = \operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
. Then $W^{\perp} = \operatorname{Span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.

A vector in W has the form

$$\mathbf{w} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ 0 \\ z \end{bmatrix}.$$

A vector in **v** in W^{\perp} has the form

$$\mathbf{v} = \mathbf{y} \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{y} \\ \mathbf{0} \end{bmatrix}.$$

Note that

$$\mathbf{w} \cdot \mathbf{v} = x(0) + 0(y) + z(0) = 0.$$

W is the *xz*-plane and W^{\perp} is the *y*-axis in \mathbb{R}^3 .

। July 17, 2023 8/61

イロン 不通 とくほとくほど

Example

Let $A = \begin{bmatrix} 1 & 3 & 2 \\ -2 & 0 & 4 \end{bmatrix}$. Show that if **x** is in Nul(*A*), then **x** is in $[\operatorname{Row}(A)]^{\perp}$. NULA We can characterize $A \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 413 \end{pmatrix} \quad \text{If} \quad A \stackrel{?}{\times} = 0$ $\vec{\chi} = \chi_3 \begin{pmatrix} 2 \\ -Y \end{pmatrix}_3 = \frac{1}{3} \chi_3 \begin{pmatrix} 6 \\ -Y \\ 3 \end{pmatrix}$ $\chi_1 = 2\chi_3$ $\chi_{2} = -4/3 \chi_{3}$ X3- fre $\mathcal{R}_{0} = \mathcal{S}_{P} \left\{ \begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{bmatrix} -2\\0\\4 \end{bmatrix} \right\} = \left\{ \vec{v}_{1}, \vec{v}_{2} \right\}$ < ロ > < 同 > < 回 > < 回 >

Let's bloc that
$$\vec{x} \cdot \vec{V}_1 = 0$$
 and $\vec{x} \cdot \vec{V}_2 = 0$
 $\vec{x} \cdot \vec{V}_1 = x_3 \begin{pmatrix} 6\\ -4\\ -3 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} = x_3 (6 - 12 + 6) = 0$
 $\vec{x} \cdot \vec{V}_2 = x_3 \begin{pmatrix} 6\\ -4\\ -7 \end{pmatrix} \cdot \begin{pmatrix} -2\\ 0\\ 4 \end{pmatrix} = x_3 (-12 + 0 + 12) = 0$
For any \vec{V} is Row A,
 $\vec{V} = c_1 \vec{V}_1 + c_2 \vec{V}_2$ so
 $\vec{y} \cdot \vec{V} = c_1 \vec{X} \cdot \vec{V}_1 + c_2 \vec{X} \cdot \vec{V}_2 = 0 + 0 = 0$
So every \vec{X} in Null A is in

July 17, 2023 10/61

996

[Row A] L

Note $A\overline{X} = \overset{\circ}{O} \xrightarrow{3}$ $\begin{bmatrix} 1 & 3 & 2\\ -2 & 0 & 7 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

The Fundamental Subspaces of a Matrix

Theorem:

Let *A* be an $m \times n$ matrix. The orthogonal complement of the row space of *A* is the null space of *A*. That is

 $[\operatorname{Row}(A)]^{\perp} = \operatorname{Nul}(A).$

The orthogonal complement of the column space of *A* is the null space of A^{T} —i.e.

 $[\operatorname{Col}(A)]^{\perp} = \operatorname{Nul}(A^{T}).$

< ロ > < 同 > < 回 > < 回 >

July 17, 2023

12/61

Example
Let
$$W = \text{Span} \left\{ \begin{bmatrix} 5 \\ -3 \\ 2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 9 \\ -1 \end{bmatrix} \right\}$$
. W is a subspace of \mathbb{R}^5 . Find a
basis for W^{\perp} , the orthogonal complement of W .
Let's use a matrix A having
 W as its row space.
 $A = \begin{bmatrix} 5 & -3 & 2 & 2 & 0 \\ 1 & 0 & 1 & 9 & -1 \end{bmatrix}$ $W^{\perp} = \text{Null } A$

July 17, 2023 13/61

・ロト・西ト・ヨト・ヨー うへの

 $\begin{bmatrix} 1 & 0 & 1 & 9 & -1 \\ 0 & 1 & 1 & \frac{13}{3} & \frac{-5}{3} \end{bmatrix} A \vec{x} = \vec{0}$ A ->

 $\Rightarrow X_1 = -X_3 - 9X_4 + X_5$ X2 = -X3 - 43 X4 + 5 X5 XJ, Xn, Xs - free

Using X3=1, then X4=3 than X5=3

July 17, 2023 14/61

A basis for WI is

 $\left\{\begin{array}{c} \begin{bmatrix} -1\\ -1\\ 1\\ 0\\ 0\\ 0 \end{array}\right\}, \begin{bmatrix} -27\\ -43\\ 0\\ 0\\ 3\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ 5\\ 0\\ 0\\ 0\\ 3 \end{bmatrix}\right\}$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q () July 17, 2023 15/61

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace W of \mathbb{R}^n , then each vector **x** in W can be realized (uniquely) as a sum

$$\mathbf{x} = c_1 \mathbf{b}_2 + \cdots + c_p \mathbf{b}_p$$

If *n* is very large, the computations needed to determine the coefficients c_1, \ldots, c_p may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition:

An indexed set $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** provided each pair of distinct vectors in the set is orthogonal. That is, provided

 $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

Example: Show that the set
$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \left\{ \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\-4\\7 \end{bmatrix} \right\}$$
 is an orthogonal set.
Use have to compute $\vec{u}_1 \cdot \vec{u}_2$,
 $\vec{u}_1 \cdot \vec{u}_3$ and $\vec{u}_2 \cdot \vec{u}_3$.

July 17, 2023 17/61

$$\mathbf{u}_{1} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} -1\\-4\\7 \end{bmatrix}$$

$$\mathbf{u}_{4} \cdot \mathbf{u}_{2} = \mathbf{3}(-1) + \mathbf{1}(2) + \mathbf{1}(1) = -\mathbf{3} + 2 + \mathbf{1} = \mathbf{0}$$

$$u_1 \cdot u_3 = 3(-1) + 1(-4) + 1(7) = -3 - 4 + 7 = 0$$

$$\tilde{u}_{z} \cdot \tilde{u}_{y} = -1(-1) + 2(-4) + 1(-2) = 1 - 8 + 7 = 0$$

Orthongal Basis

Definition:

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis that is also an orthogonal set.

Theorem:

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Then each vector \mathbf{y} in W can be written as the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$$
, where the weights $c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$

Remark: What's nice about this is how simple the formula for the *c*'s is.

• • • • • • • • • • • • •

July 17, 2023

19/61

Example

$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \left\{ \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\-4\\7 \end{bmatrix} \right\}$$
 is an orthogonal basis of
 \mathbb{R}^3 . Express the vector $\mathbf{y} = \begin{bmatrix} -2\\3\\0 \end{bmatrix}$ as a linear combination of the
basis vectors.

$$\vec{y} = C_1 \vec{u}_1 + C_2 \vec{u}_2 + C_3 \vec{u}_3 \qquad C_1 = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}$$

$$\vec{y} \cdot \vec{u}_{1} = -3$$

 $\vec{y} \cdot \vec{u}_{2} = 9$
 $\vec{y} \cdot \vec{u}_{2} = 9$
 $\vec{y} \cdot \vec{u}_{3} = -10$
 $\vec{u}_{3} \cdot \vec{u}_{3} = -66$

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

$$y = \frac{-3}{11} \dot{u}_1 + \frac{9}{6} \dot{u}_2 - \frac{0}{66} \dot{u}_3$$

$$= -\frac{3}{11} \tilde{U}_{1,4} + \frac{4}{3} \tilde{U}_{2} - \frac{5}{73} \tilde{U}_{3}$$

▲□▶ ▲ 클▶ ▲ 클 ▶ 월 - 의 Q @
 July 17, 2023 21/61

Observation

Consider the alternatives for this example.

We're writting **y** in the new basis $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. One option is to use the change of basis matrix and write

$$[\mathbf{y}]_{\mathcal{B}} = \begin{bmatrix} 3 & -1 & -1 \\ 1 & 2 & -4 \\ 1 & 1 & 7 \end{bmatrix}^{-1} \mathbf{y}$$

Or we could set up an augemented matrix and perform row reduction.

$$\begin{bmatrix} 3 & -1 & -1 & -2 \\ 1 & 2 & -4 & 3 \\ 1 & 1 & 7 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \dots$$

July 17, 2023

22/61

Because of the nice nature of the orthogonal basis, we can find the coefficients **by hand** with very little effort!

Projection

Given a nonzero vector **u**, suppose we wish to decompose another nonzero vector **y** into a sum of the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

in such a way that \hat{y} is parallel to **u** and **z** is perpendicular to **u**.

Projection

Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u} , there is a scalar α such that

$$\hat{\mathbf{y}} = \alpha \mathbf{u}.$$

Find a formula for this scalar.

$$\dot{y} = \hat{y} + \hat{z} \quad \text{where} \quad \hat{y} \parallel \hat{u} \quad \text{ad} \quad \hat{z} \perp \hat{u}$$

$$\overleftarrow{z} \cdot \hat{w} = 0$$

$$i \cdot \hat{y} = \hat{u} \cdot (\hat{y} + \hat{z}) \qquad 0$$

$$= \hat{u} \cdot (\alpha \hat{u}) + \hat{u} \cdot \hat{z}$$

$$\vec{u} \cdot \hat{y} = \alpha \hat{u} \cdot \hat{u} \quad \exists \quad \alpha = \frac{\hat{u} \cdot \hat{y}}{\hat{u} \cdot \hat{u}}$$

$$\dot{y} = (\frac{\hat{u} \cdot \hat{y}}{\hat{u} \cdot \hat{u}})^{\hat{u}}$$

July 17, 2023 24/61

Projection onto the subspace $L = \text{Span}\{\mathbf{u}\}$

Projection Notation

We'll use the following notation for the project of a vector **y** onto the line $L = \text{Span}\{\mathbf{u}\}$ for nonzero vector **u**.

$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}.$$

This may also be written as proj_uy.

This is read as "the projection of **y** onto **u** (or onto *L*)."

In writing $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, there's not a special formula for the \mathbf{z} part. It's just the difference, $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

July 17, 2023

25/61

Example Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Write $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}}$ is in Span $\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u} .

$$\hat{y} = \frac{\tilde{y} \cdot \tilde{u}}{\tilde{u} \cdot \tilde{u}} \quad \tilde{u} \qquad \tilde{y} \cdot \tilde{u} = 7(4) + 6(2) = 40$$

$$\tilde{u} \cdot \tilde{u} = \tilde{u} + 2^{2} = 20$$

$$\begin{split} \dot{y}_{2} &= \frac{49}{29} \begin{bmatrix} 4}{2} \\ z \end{bmatrix} = \begin{bmatrix} 9\\4 \end{bmatrix} \\ \vec{y}_{2} &= \hat{y}_{2} \\ \vec{y}_{3} &= \hat{y}_{3} \\ \vec{y}_{3} \\= \hat{y}_{3} \\= \hat{y$$

July 17, 2023 26/61

< ロ > < 同 > < 回 > < 回 >

 $\begin{bmatrix} 7\\6 \end{bmatrix} = \begin{bmatrix} 8\\7 \end{bmatrix} + \begin{bmatrix} -1\\2 \end{bmatrix}$ u [4] Ś J.Z م ک Note u. 2 = - 4+4 =0 /

Example Continued...

Determine the distance between the point (7, 6) and the line Span{ \mathbf{u} }.

The distance is
$$\|\vec{z}\|$$

dist $(\vec{y}, L) = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$
T
distance between \vec{y}
distance between \vec{y}
distance between \vec{y}
distance between \vec{y}

July 17, 2023 28/61

<ロト <回 > < 回 > < 回 > < 回 > … 回

Distance between point and line

Figure: The distance between the point (7,6) and the line Span{u} is the norm of z.

Orthonormal Sets

Definition:

A set $\{u_1, \ldots, u_p\}$ is called an **orthonormal set** if it is an orthogonal set of **unit vectors**.

Definition:

An **orthonormal basis** of a subspace W of \mathbb{R}^n is a basis that is also an orthonormal set.

Remark: So an **orthonormal** set (or basis) is an orthogonal set (or basis) with the extra condition that each vector has norm $\sqrt{\mathbf{u}_i \cdot \mathbf{u}_i} = 1$.

July 17, 2023

30/61

Remark: Any orthogonal set can be normalized to obtain an orthonormal one.

Example:
$$\vec{u}_1$$
, \vec{u}_2
Show that $\left\{ \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix}, \begin{bmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{bmatrix} \right\}$ is an orthonormal basis for \mathbb{R}^2 .
They are linearly independent, and there are two of them. So it's a basis,

Note

$$\vec{u}_{1} \cdot \vec{u}_{2} = -\frac{12}{25} + \frac{12}{25} = 0$$

$$\vec{u}_{1} \cdot \vec{u}_{1} = \left(\frac{3}{5}\right)^{2} + \left(\frac{4}{5}\right)^{2} = -\frac{9 + (16)}{25} = 1$$

$$\vec{u}_{2} - \vec{u}_{2} = \left(-\frac{4}{5}\right)^{2} + \left(\frac{3}{5}\right)^{2} = 1$$

July 17, 2023 31/61

୬୯୯

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

{U, Uz} is an arthonormal basis for R2.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧

Orthogonal Matrix

Consider the matrix $U = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$ whose columns are the vectors in the last example. Compute the product $U^{T}U = \begin{bmatrix} 3/5 & 1/5 \\ -1/5 & 3/5 \end{bmatrix} \begin{bmatrix} \frac{3}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{3}{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{array}{c} - & U \\ \hline \begin{matrix} \vec{u}_1 \cdot \vec{u}_1 & \vec{u}_1 \cdot \vec{u}_2 \\ \hline \begin{matrix} \vec{u}_2 \cdot \vec{u}_1 & \vec{u}_2 \cdot \vec{u}_2 \end{matrix} \end{array}$

Question: What does this say about U^{-1} ?

$$u^{-1} = u^{T}$$

July 17, 2023 33/61

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Orthogonal Matrix

Definition:

A square matrix U is called an **orthogonal matrix** if $U^T = U^{-1}$.

Theorem:

An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^n .

Remark: The linear transformation associated to an orthogonal matrix preserves *lengths* and *angles* in the sense of the following theorem.

July 17, 2023

34/61

Theorem: Orthogonal Matrices

Theorem

Let *U* be an $n \times n$ orthogonal matrix and **x** and **y** vectors in \mathbb{R}^n . Then

(a)
$$||U\mathbf{x}|| = ||\mathbf{x}||$$

(b)
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$
, in particular

(c) $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace *W* of \mathbb{R}^n that is *closest* to a given point \mathbf{y} .

Figure: Illustration of an orthogonal projection. Note that $dist(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

July 17, 2023 37/61

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Each vector **y** in \mathbb{R}^n can be written uniquely as a sum

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \sum_{j=1}^{\rho} \left(\frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \right) \mathbf{u}_j, \text{ and } \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

Remark: The formula for $\hat{\mathbf{y}}$ looks just like the projection onto a line, but with more terms. That is,

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \left(\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}\right) \mathbf{u}_2 + \dots + \left(\frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \oplus \mathbf{u}_p}\right) \mathbf{u}_p$$

$$\lim_{h \to \infty} |\mathbf{x}|^2 = \sum_{p \to \infty} |\mathbf{x}|^2 + \sum_{p \to \infty} |\mathbf{x}|^2 +$$

Remarks on the Orthogonal Decomposition Thm.

- Note that the basis must be orthogonal, but otherwise the vector ŷ is independent of the particular basis used!
- The vector ŷ is called the orthogonal projection of y onto W. We can denote it

proj_W **y**.

 All you really have to do is remember how to project onto a line. Notice that

$$\operatorname{proj}_{u_1} \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1.$$

If $W = \text{Span}\{u_1, \dots, u_p\}$ with the **u**'s orthogonal, then

$$\operatorname{proj}_W \mathbf{y} = \operatorname{proj}_{\mathbf{u}_1} \mathbf{y} + \operatorname{proj}_{\mathbf{u}_2} \mathbf{y} + \cdots + \operatorname{proj}_{\mathbf{u}_p} \mathbf{y}.$$

Example

Let $\mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$ and $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. (a) Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for W. Note that i, iz = -4+2+2 = 0, So (J. J.) is orthogonal. Since they are lin. independent and W= Spon (Ti, Tiz), the set is an orthog onel basis.

3

Example Continued...

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\} \text{ and } \mathbf{y} = \begin{bmatrix} 4\\8\\1 \end{bmatrix}$$

(b) Find the orthogonal projection of \mathbf{y} onto W.

(c) Find the shortest distance between \mathbf{y} and the subspace W.

 \sim

$$\vec{y} = \begin{bmatrix} 4\\ 8\\ 1 \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} 2\\ 1\\ 5 \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} 2\\ 7\\ 7 \end{bmatrix}, \quad \vec{z} \in W^{\perp}$$
$$\vec{z} = \vec{y} - \vec{y} = \begin{bmatrix} 4\\ 9\\ 1 \end{bmatrix}, -\begin{bmatrix} 2\\ 7\\ 7 \end{bmatrix} = \begin{bmatrix} 2\\ 7\\ -4 \end{bmatrix}, \quad \vec{z} \in W^{\perp}$$
$$dist(\vec{y}, W) = \|\vec{z}\| = \sqrt{2^{2} + 4^{2} + (-4)^{2}} = 6$$
$$W = \text{Span} \left\{ \begin{bmatrix} 2\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} -2\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} -2\\ 2\\ 1 \end{bmatrix} \right\}, \quad \vec{z} \cdot \vec{u} = 0$$
$$\vec{z} \cdot \vec{u}_{z} = 0$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧

Computing Orthogonal Projections

Theorem

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal** basis of a subspace W of \mathbb{R}^n , and **y** is any vector in \mathbb{R}^n then

$$\operatorname{proj}_{W} \mathbf{y} = \sum_{j=1}^{p} \left(\mathbf{y} \cdot \mathbf{u}_{j} \right) \mathbf{u}_{j}.$$

And, if U is the matrix $U = [\mathbf{u}_1 \cdots \mathbf{u}_p]$, then the above is equivalent to

$$\operatorname{proj}_{W} \mathbf{y} = UU' \mathbf{y}.$$

Remark: In general, *U* is not square; it's $n \times p$. So even though UU^T will be a square matrix, it is not the same matrix as U^TU and it is not the identity matrix.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2\\2\\1 \end{bmatrix}$ and $W = \text{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$. Find an

orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for *W*. Then compute the matrices $U^T U$ and UU^T where $U = [\mathbf{u}_1 \ \mathbf{u}_2]$.

$$\begin{split} |\vec{\nabla}_{1}||^{2} = G \implies ||\vec{\nabla}_{1}|| = 3, \quad ||\vec{\nabla}_{1}||^{2} = G \implies ||\vec{\nabla}_{2}|| = 3\\ \vec{u}_{1} = \frac{\vec{\nabla}_{1}}{||\vec{\nabla}_{1}||} = \frac{1}{3}\vec{\nabla}_{1} = \begin{pmatrix} 2/3\\ 1/3\\ 2/3\\ 1/3 \end{pmatrix}, \quad \vec{u}_{2} = \frac{\vec{\nabla}_{2}}{||\vec{\nabla}_{2}||} = \begin{pmatrix} -2/3\\ 2/3\\ 2/3\\ 1/3 \end{pmatrix}\\ (I = \begin{bmatrix} 2/3 & -2/3\\ 1/3 & 2/3\\ 2/3 & 1/3 \end{bmatrix} = \frac{1}{3}\begin{pmatrix} 2 & -2\\ 1 & 2\\ 2 & 1 \end{pmatrix}$$

July 17, 2023 45/61

<ロ> <四> <四> <四> <四> <四</p>

$$\begin{aligned} u^{\mathsf{T}} u &= \frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -2 \\ 1 & 2 \\ 2 & 1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ u u^{\mathsf{T}} &= \frac{1}{3} \begin{bmatrix} 2 & -2 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} \\ &= \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \\ &= \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \\ (uu^{\mathsf{T}})^{\mathsf{T}} &= (u^{\mathsf{T}})^{\mathsf{T}} u^{\mathsf{T}} = uu^{\mathsf{T}} \\ &= \frac{1}{9} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\} \text{ and } \mathbf{y} = \begin{bmatrix} 4\\8\\1 \end{bmatrix}$$

Use the matrix formulation to find $proj_W y$.

$$U = \frac{1}{3} \begin{bmatrix} z & -2 \\ 1 & z \\ z & 1 \end{bmatrix} \quad U = \frac{1}{3} \begin{bmatrix} \varphi & -z & z \\ -z & 5 & 4 \\ z & 4 & 5 \end{bmatrix}$$

$$p \circ j_{w} y = (u u y = \frac{1}{2} \left\{ \begin{array}{c} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{array} \right\} \left\{ \begin{array}{c} 4 \\ 9 \\ 1 \end{array} \right\}$$

$$= \frac{1}{9} \begin{pmatrix} 18\\36\\45 \end{pmatrix} = \begin{pmatrix} 2\\4\\5 \end{pmatrix}$$