July 18 Math 3260 sec. 51 Summer 2023

Section 6.1: Inner Product, Length, and Orthogonality

Definition: Inner (a.k.a. Scalar) Product

For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[u_{1} u_{2} \cdots u_{n}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

There are several notations for this including

$$
\mathbf{u}^{T} \mathbf{v}, \quad \mathbf{u} \cdot \mathbf{v}, \quad \text { and } \quad\langle\mathbf{u}, \mathbf{v}\rangle
$$

Properties of the Inner Product

Theorem:

For each \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} and scalar c
i. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
ii. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
iii. $\mathbf{u} \cdot(c \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})$
iv. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

The Norm, Unit Vectors \& Normalizing

Definition

The norm of the vector \mathbf{v} in \mathbb{R}^{n} is the nonnegative number $\|\mathbf{v}\|=$ $\sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Definition

A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.

Theorem

For vector \mathbf{v} in \mathbb{R}^{n} and scalar $c\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.

If $\mathbf{v} \neq \mathbf{0}$, then we can normalize to get a unit vector. $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector parallel to \mathbf{v}.

Distance in \mathbb{R}^{n}

Definition:

For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})
$$

and is defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^{2} between points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$,

$$
d=\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}}
$$

Orthogonality \& The Pythagorean Theorem

Definition:

Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

The Pythagorean Theorem:

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Orthogonal Complement

Definition:

Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is said to be orthogonal to W if \mathbf{z} is orthogonal to every vector in W. That is, if

$$
\mathbf{z} \cdot \mathbf{w}=0 \quad \text { for every } \quad \mathbf{w} \in W
$$

Definition:

Given a subspace W of \mathbb{R}^{n}, the set of all vectors orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (read as "W perp").

$$
W^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{w}=0 \quad \text { for every } \quad \mathbf{w} \in W\right\}
$$

Theorem:

Theorem:

If W is a subspace of \mathbb{R}^{n}, then W^{\perp} is a subspace of \mathbb{R}^{n}.

This is readily proved by appealing to the properties of the inner product. In particular

$$
\begin{gathered}
\mathbf{0} \cdot \mathbf{w}=0 \quad \text { for any vector } \quad \mathbf{w} \\
\begin{array}{c}
\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w} \text { and } \\
(c \mathbf{u}) \cdot \mathbf{w}=\mathbf{c} \mathbf{u} \cdot \mathbf{w} .
\end{array}
\end{gathered}
$$

Example

Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Then $W^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
A vector in W has the form

$$
\mathbf{w}=x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
0 \\
z
\end{array}\right] . \quad x^{\prime} p^{\mid \sigma^{N}}
$$

A vector in \mathbf{v} in W^{\perp} has the form

$$
\mathbf{v}=y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
y \\
0
\end{array}\right] .
$$

Note that

$$
\mathbf{w} \cdot \mathbf{v}=x(0)+0(y)+z(0)=0 .
$$

W is the $x z$-plane and W^{\perp} is the y-axis in \mathbb{R}^{3}.

Example
Let $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -2 & 0 & 4\end{array}\right]$. Show that if \mathbf{x} is in $\operatorname{Nul}(A)$, then \mathbf{x} is in $[\operatorname{Row}(A)]^{\perp}$.
we con characterize NolA.

$$
\begin{aligned}
& A \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 4 / 3
\end{array}\right] \text { If } A \vec{x}=\overrightarrow{0} \\
& \begin{array}{l}
x_{1}=2 x_{3} \\
x_{2}=-4 / 3 x_{3} \\
x_{3} \text {-her }
\end{array} \vec{x}=x_{3}\left[\begin{array}{c}
2 \\
-4 / 3 \\
1
\end{array}\right]=\frac{1}{3} x_{3}\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right] \\
& \text { Row } A=\text { Spin }\left\{\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right]\right\}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}
\end{aligned}
$$

Let's show that $\vec{x} \cdot \vec{V}_{1}=0$ and $\vec{X} \cdot \vec{V}_{2}=0$

$$
\begin{aligned}
& \vec{x} \cdot \vec{v}_{1}=x_{3}\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=x_{3}(6-12+6)=0 \\
& \vec{x} \cdot \vec{v}_{2}=x_{3}\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right]=x_{3}(-12+0+12)=0
\end{aligned}
$$

For any \vec{V} is Row A, $\vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}$ so

$$
\vec{x} \cdot \vec{v}=c_{1} \vec{x} \cdot \vec{V}_{1}+c_{2} \vec{x} \cdot \vec{V}_{2}=0+0=0
$$

So ever \vec{x} in Null A is in
$[\text { Row } A]^{\perp}$.

Note $A \vec{x}=\overrightarrow{0} \quad \Rightarrow$

$$
\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The Fundamental Subspaces of a Matrix

Theorem:

Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$
[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A)
$$

The orthogonal complement of the column space of A is the null space of A^{T}-i.e.

$$
[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

Example

Let $W=$ Span $\left\{\left[\begin{array}{r}5 \\ -3 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ 1 \\ 9 \\ -1\end{array}\right]\right\} . W$ is a subspace of \mathbb{R}^{5}. Find a basis for W^{\perp}, the orthogonal complement of W.

Let's use a matrix A having
W as its row space

$$
A=\left[\begin{array}{ccccc}
5 & -3 & 2 & 2 & 0 \\
1 & 0 & 1 & 9 & -1
\end{array}\right] \quad W^{\perp}=\text { Nil } A
$$

$$
A \xrightarrow{\text { ref }}\left[\begin{array}{lllll}
1 & 0 & 1 & 9 & -1 \\
0 & 1 & 1 & \frac{43}{3} & \frac{-5}{3}
\end{array}\right] \quad A \vec{x}=0
$$

$$
\begin{aligned}
\Rightarrow & x_{1}=-x_{3}-9 x_{4}+x_{5} \\
& x_{2}=-x_{3}-\frac{43}{3} x_{4}+\frac{5}{3} x_{5} \\
& x_{3}, x_{4}, x_{5}-\text { free } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-9 \\
\frac{-43}{3} \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
5)_{3} \\
0 \\
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Using $x_{3}=1$, them $x_{4}=3$ than $x_{5}=3$

A basis for W^{\perp} is

$$
\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-27 \\
-43 \\
0 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
5 \\
0 \\
0 \\
3
\end{array}\right]\right\}
$$

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}, then each vector \mathbf{x} in W can be realized (uniquely) as a sum

$$
\mathbf{x}=c_{1} \mathbf{b}_{2}+\cdots+c_{p} \mathbf{b}_{p}
$$

If n is very large, the computations needed to determine the coefficients c_{1}, \ldots, c_{p} may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition:

An indexed set $\left\{\mathbf{u}_{1}, \therefore, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal.
That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Example: Show that the set
$\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal set.
we hove to compute $\vec{u}_{1} \cdot \vec{u}_{2}$,
$\vec{u}_{1} \cdot \vec{u}_{3}$ and $\vec{u}_{2} \cdot \vec{u}_{3}$.

$$
\begin{aligned}
& \mathbf{u}_{1}= {\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}
-1 \\
-4 \\
7
\end{array}\right] } \\
& \vec{u}_{1} \cdot \vec{u}_{2}=3(-1)+1(2)+1(1)=-3+2+1=0 \\
& \vec{u}_{1} \cdot \vec{u}_{3}=3(-1)+1(-4)+1(7)=-3-4+7=0 \\
& \vec{u}_{2} \cdot \vec{u}_{3}=-1(-1)+2(-4)+1(7)=1-8+7=0
\end{aligned}
$$

So $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is
on orth gond set.

Orthongal Basis

Definition:

An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Theorem:

Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination
$\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad$ where the weights $\quad c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}$.

Remark: What's nice about this is how simple the formula for the c's is.

Example
$\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Express the vector $\mathbf{y}=\left[\begin{array}{r}-2 \\ 3 \\ 0\end{array}\right]$ as a linear combination of the basis vectors.

$$
\begin{array}{ll}
\vec{y}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3} \quad c_{i}=\frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} \\
\vec{y} \cdot \vec{u}_{1}=-3 & \overrightarrow{u_{1}} \cdot \vec{u}_{1}=11 \\
\vec{y} \cdot \vec{u}_{2}=8 & \vec{u}_{2} \cdot \vec{u}_{2}=6 \\
\vec{y} \cdot \vec{u}_{3}=-10 & \vec{u}_{3} \cdot \vec{u}_{3}=66
\end{array}
$$

$$
\begin{aligned}
\vec{v}_{y} & =\frac{-3}{11} \vec{u}_{1}+\frac{8}{6} \vec{u}_{2}-\frac{10}{66} \vec{u}_{3} \\
& =\frac{-3}{11} \vec{u}_{1}+\frac{4}{3} \vec{u}_{2}-\frac{5}{33} \vec{u}_{3}
\end{aligned}
$$

Observation

Consider the alternatives for this example.
We're writting \mathbf{y} in the new basis $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. One option is to use the change of basis matrix and write

$$
[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{rrr}
3 & -1 & -1 \\
1 & 2 & -4 \\
1 & 1 & 7
\end{array}\right]^{-1} \mathbf{y}
$$

Or we could set up an augemented matrix and perform row reduction.

$$
\left[\begin{array}{rrrr}
3 & -1 & -1 & -2 \\
1 & 2 & -4 & 3 \\
1 & 1 & 7 & 0
\end{array}\right] \xrightarrow{\text { rref }} \ldots
$$

Because of the nice nature of the orthogonal basis, we can find the coefficients by hand with very little effort!

Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector \mathbf{y} into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u}.

Projection
Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u}, there is a scalar α such that

$$
\hat{\mathbf{y}}=\alpha \mathbf{u} .
$$

Find a formula for this scalar.

$$
\begin{aligned}
\vec{u}_{d} & =\hat{y}+\vec{z} \text { where } \hat{y} \| \vec{u} \text { and } \underbrace{\vec{z} \perp \vec{u}}_{\vec{z}-\vec{u}}=0 \\
\vec{u} \cdot \vec{y} & =\vec{u} \cdot(\hat{y}+\vec{z}) \quad, 0 \\
& =\vec{u} \cdot(\alpha \vec{u})+\vec{u} \cdot \vec{z} \\
\vec{u} \cdot \vec{v} & =\alpha \vec{u} \cdot \vec{u} \Rightarrow \alpha=\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}} \\
\hat{y} & =\left(\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}}\right) \vec{u}
\end{aligned}
$$

Projection onto the subspace $L=\operatorname{Span}\{\mathbf{u}\}$

Projection Notation

We'll use the following notation for the project of a vector \mathbf{y} onto the line $L=\operatorname{Span}\{\mathbf{u}\}$ for nonzero vector \mathbf{u}.

$$
\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

This may also be written as $\operatorname{proj}_{\mathbf{u}} \mathbf{y}$.

This is read as "the projection of \mathbf{y} onto \mathbf{u} (or onto L)."
In writing $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, there's not a special formula for the \mathbf{z} part. It's just the difference, $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$.

Example
Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is in $\operatorname{Span}\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u}.

$$
\begin{aligned}
\hat{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \quad \vec{y} \cdot \vec{u}=7(4)+6(2)=40 \\
\vec{u} \cdot \vec{u}=4^{2}+2^{2}=20
\end{aligned} \begin{aligned}
& \hat{y}=\frac{40}{20}\left[\begin{array}{l}
4 \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
& \vec{y}=\hat{y}+\vec{z} \Rightarrow \vec{z}=\vec{v}-\hat{y} \\
&=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\underset{\vec{y}}{\left[\begin{array}{l}
7 \\
6
\end{array}\right]}=\underset{\hat{y}}{\left[\begin{array}{l}
8 \\
4
\end{array}\right]+} \underset{\vec{z}}{\left[\begin{array}{c}
-1 \\
2
\end{array}\right]} \quad \vec{u}=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Note $\vec{u} \cdot \vec{z}=-4+4=0 \mathrm{~J}$.

Example Continued...
Determine the distance between the point $(7,6)$ and the line Span $\{\mathbf{u}\}$.

The distance is $\|\vec{z}\|$

$$
\operatorname{dis} t(\vec{y}, L)=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
$$

distance between and the line $L=\operatorname{span}\{\vec{h} \zeta$.

Distance between point and line

Figure: The distance between the point $(7,6)$ and the line $\operatorname{Span}\{\mathbf{u}\}$ is the norm of \mathbf{z}.

Orthonormal Sets

Definition:

A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthonormal set if it is an orthogonal set of unit vectors.

Definition:

An orthonormal basis of a subspace W of \mathbb{R}^{n} is a basis that is also an orthonormal set.

Remark: So an orthonormal set (or basis) is an orthogonal set (or basis) with the extra condition that each vector has norm $\sqrt{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}=1$.

Remark: Any orthogonal set can be normalized to obtain an orthonormal one.

Example: $\vec{u}_{1} \vec{u}_{2}$
Show that $\left\{\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right],\left[\begin{array}{c}-\frac{4}{5} \\ \frac{3}{5}\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
They are linearly independent, and there ane two of them. So it's a basis.

Note

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{2}=-\frac{12}{25}+\frac{12}{25}=0 \\
& \vec{u}_{1} \cdot \vec{u}_{1}=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{9+16}{25}=1 \\
& \vec{u}_{2} \cdot \vec{u}_{2}=\left(-\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}=1
\end{aligned}
$$

$\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is an orthonormal basis for \mathbb{R}^{2}.

Orthogonal Matrix

Consider the matrix $U=\left[\begin{array}{rr}\frac{3}{5} & -\frac{4}{5} \\ 4 & \frac{3}{5} \\ 5 & 5\end{array}\right]$ whose columns are the vectors in the last example. Compute the product
$U^{T} U=\left[\begin{array}{cc}3 / 5 & 4 / 5 \\ -4 / 5 & 3 / 5\end{array}\right]\left[\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\left[\begin{array}{ll}
\vec{u}_{1} \cdot \vec{u}_{1} & \vec{u}_{1} \cdot \vec{u}_{2} \\
\vec{u}_{2} \cdot \vec{u}_{1} & \vec{u}_{2} \cdot \vec{u}_{2}
\end{array}\right]
$$

Question: What does this say about U^{-1} ?

$$
U^{-1}=U^{\top}
$$

Orthogonal Matrix

Definition:

A square matrix U is called an orthogonal matrix if $U^{T}=U^{-1}$.

Theorem:

An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^{n}.

Remark: The linear transformation associated to an orthogonal matrix preserves lengths and angles in the sense of the following theorem.

Theorem: Orthogonal Matrices

Theorem

Let U be an $n \times n$ orthogonal matrix and \mathbf{x} and \mathbf{y} vectors in \mathbb{R}^{n}. Then
(a) $\|U \mathbf{x}\|=\|\mathbf{x}\|$
(b) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$, in particular
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace W of \mathbb{R}^{n} that is closest to a given point \mathbf{y}.

Figure: Illustration of an orthogonal projection. Note that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis for W, then

$$
\hat{\mathbf{y}}=\sum_{j=1}^{p}\left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}\right) \mathbf{u}_{j}, \quad \text { and } \quad \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} .
$$

Remark: The formula for $\hat{\mathbf{y}}$ looks just like the projection onto a line, but with more terms. That is,

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p \cdot} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p}
$$

Remarks on the Orthogonal Decomposition Thm.

- Note that the basis must be orthogonal, but otherwise the vector $\hat{\mathbf{y}}$ is independent of the particular basis used!
- The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W. We can denote it

$$
\operatorname{proj}_{w} \mathbf{y}
$$

- All you really have to do is remember how to project onto a line. Notice that

$$
\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} .
$$

If $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ with the \mathbf{u} 's orthogonal, then

$$
\operatorname{proj}_{W} \mathbf{y}=\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}+\operatorname{proj}_{\mathbf{u}_{2}} \mathbf{y}+\cdots+\operatorname{proj}_{\mathbf{u}_{p}} \mathbf{y}
$$

Example
Let $\mathbf{y}=\left[\begin{array}{l}4 \\ 8 \\ 1\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 2 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for W.
Note that $\vec{u}_{1} \cdot \vec{u}_{2}=-4+2+2=0$,
So $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is othogond.
Since they are lin. independent and $W=\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$, the set is an orthos one basis.

Example Continued...

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

(b) Find the orthogonal projection of \mathbf{y} onto W.

$$
\begin{aligned}
& \hat{y}=\text { proj}_{w} \vec{y}=\frac{\vec{u}_{1} \cdot \vec{y}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\frac{\vec{u}_{2} \cdot \vec{y}}{\vec{u}_{2} \cdot \overrightarrow{u_{2}}} \vec{u}_{2} \\
& \vec{y}_{y} \cdot \vec{u}_{1}=18 \quad \vec{u}_{1} \cdot \vec{u}_{1}=9 \\
& \vec{y} \cdot \vec{u}_{2}=9 \quad \vec{u}_{2} \cdot \vec{u}_{2}=9
\end{aligned}
$$

$$
\begin{aligned}
& \hat{y}=\frac{18}{9}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+\frac{9}{9}\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right] \\
&=\left[\begin{array}{l}
4 \\
2 \\
4
\end{array}\right]+\left[\begin{array}{c}
2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \\
& \text { Pris }_{w} \bar{y}=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
\end{aligned}
$$

(c) Find the shortest distance between y and the subspace W.

$$
\begin{aligned}
& \vec{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right], \hat{y}=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \vec{y}=\hat{y}+\vec{z}, \vec{z} \in W^{1} \\
& \vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
y \\
5
\end{array}\right]=\left[\begin{array}{c}
2 \\
y \\
-4
\end{array}\right] \\
& \operatorname{dist}(\vec{y}, w)=\|\vec{z}\|=\sqrt{2^{2}+4^{2}+(-4)^{2}}=6
\end{aligned}
$$

$$
\begin{aligned}
w=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right]\right\} & \vec{z} \cdot \vec{u}_{1}=0 \\
& \vec{z} \cdot \vec{u}_{2}=0
\end{aligned}
$$

Computing Orthogonal Projections

Theorem
If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, and \mathbf{y} is any vector in \mathbb{R}^{n} then

$$
\operatorname{proj}_{W} \mathbf{y}=\sum_{j=1}^{p}\left(\mathbf{y} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j} .
$$

And, if U is the matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then the above is equivalent to

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} .
$$

Remark: In general, U is not square; it's $n \times p$. So even though $U U^{\top}$ will be a square matrix, it is not the same matrix as $U^{\top} U$ and it is not the identity matrix.

Example
Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Find an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for W. Then compute the matrices $U^{\top} U$ and $U U^{T}$ where $U=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$.

$$
\begin{aligned}
& \left\|\vec{v}_{1}\right\|^{2}=9 \Rightarrow\left\|\vec{v}_{1}\right\|=3, \quad\left\|\vec{v}_{2}\right\|^{2}=9 \Rightarrow\left\|\vec{v}_{2}\right\|=3 \\
& \vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{3} \vec{v}_{1}=\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right], \quad \vec{u}_{2}=\frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \\
& U=\left[\begin{array}{ll}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& u^{\top} u=\frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \begin{aligned}
u^{\top} & =\frac{1}{3}\left[\begin{array}{ll}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right]^{\frac{1}{3}}\left[\begin{array}{lll}
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right] \\
\left(u u^{\top}\right)^{\top} & =\left(u^{\top}\right)^{\top} u^{\top}=u u^{\top}
\end{aligned} .
\end{aligned}
$$

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

Use the matrix formulation to find $\operatorname{proj}_{w} \mathbf{y}$.

$$
\begin{aligned}
& u=\frac{1}{3}\left[\begin{array}{cc}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right] u u^{\top}=\frac{1}{9}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right] \\
& \operatorname{proj}_{w} \vec{y}=u u^{\top} \vec{y}=\frac{1}{9}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
\end{aligned}
$$

$$
=\frac{1}{9}\left[\begin{array}{l}
18 \\
36 \\
45
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
$$

