July 20 Math 3260 sec. 51 Summer 2023

Given some point \mathbf{y} in \mathbb{R}^{n}, we considered the problem of finding the point in some subspace W of \mathbb{R}^{n} that is closest to \mathbf{y}, or figuring out how far \mathbf{y} is from W.

Perhaps W is the column space of some matrix, and we want to approximate the solution to a problem $A \mathbf{x}=\mathbf{b}$ that's not actually consistent.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis for W, then

$$
\hat{\mathbf{y}}=\sum_{j=1}^{p}\left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}\right) \mathbf{u}_{j}, \quad \text { and } \quad \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} .
$$

This holds even if W is a line $\operatorname{Span}\{\mathbf{u}\}$ for one nonzero \mathbf{u} in which case

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Orthogonal Decomposition with Orthonormal Basis

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, and \mathbf{y} is any vector in \mathbb{R}^{n} then

$$
\operatorname{proj}_{W} \mathbf{y}=\sum_{j=1}^{p}\left(\mathbf{y} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j}
$$

And, if U is the matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then the above is equivalent to

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} .
$$

Remark

If W has dimension ≥ 2, these decomposition formulas only work with an orthogonal basis. If you don't have an orthogonal basis, it's not clear how to make use of this.

Section 6.4: Gram-Schmidt Orthogonalization

Big Question:

Given any-old basis for a subspace W of \mathbb{R}^{n}, can we construct an orthogonal basis for that same space?

Example: Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]\right\}$. Find an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ that spans W.
\vec{V}_{1} and \vec{V}_{2} are in W, so
$\vec{v}_{1}=a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}$ and $\vec{v}_{2}=b_{1} \vec{x}_{1}+b_{2} \vec{x}_{2}$
we need $\vec{v}_{1} \cdot \stackrel{\rightharpoonup}{V}_{2}=0$

Let $a_{1}=1$ and $b_{2}=1$ and $a_{2}=0$
so $\vec{v}_{1}=\vec{x}_{1}$

$$
\vec{V}_{2}=b_{1} \vec{X}_{1}+\vec{X}_{2}
$$

we need $\vec{V}_{1} \cdot \vec{V}_{2}=0$

$$
\begin{array}{r}
\vec{v}_{1} \cdot \vec{v}_{2}=\vec{x}_{1} \cdot\left(b_{1} \vec{x}_{1}+\vec{x}_{2}\right)=0 \\
b_{1} \vec{x}_{1} \cdot \vec{x}_{1}+\vec{x}_{1} \cdot \vec{x}_{2}=0 \\
b_{1} \vec{x}_{1} \cdot \vec{x}_{1}=-\vec{x}_{1} \cdot \vec{x}_{2} \\
b_{1}=\frac{-\vec{x}_{1} \cdot \vec{x}_{2}}{\vec{x}_{1} \cdot \vec{x}_{1}}
\end{array}
$$

Since $\vec{x}_{1}=\vec{V}_{1}, b_{1}=\frac{-\vec{V}_{1} \cdot \vec{x}_{2}}{\vec{V}_{1} \cdot \vec{V}_{1}}$

$$
\begin{array}{ll}
\vec{V}_{1}=\vec{x}_{1} \\
\vec{V}_{2}=b_{1} \vec{X}_{1}+\vec{x}_{2} & =\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]\right\} . \\
\vec{V}_{1}=\vec{X}_{1} \\
\vec{V}_{2}=\vec{X}_{2}-\frac{\vec{V}_{1} \cdot \vec{x}_{2}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1} & \vec{V}_{2}=\vec{x}_{2}-\operatorname{pri}_{\vec{x}_{1}} \\
\vec{V}_{1}=\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] & \vec{X}_{2} \\
\vec{V}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]-\left(\frac{-2}{3}\right)\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] & \vec{V}_{1} \cdot \vec{X}_{2}=-2
\end{array}
$$

$$
\vec{V}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
2 / 3 \\
22 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
$$

The new, orthogonal basis is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 / 3 \\ -1 / 3 \\ -1 / 3\end{array}\right]\right\}$

Check for othogonality:

$$
\vec{V}_{1} \cdot \vec{V}_{2}=\frac{2}{3}-\frac{1}{3}-\frac{1}{3}=0
$$

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\sum_{j=1}^{p-1}\left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}\right) \mathbf{v}_{j} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. Moreover, for each $k=1, \ldots, p$
$\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$.

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\operatorname{proj}_{S p a n\left\{\mathbf{v}_{1}\right\}} \mathbf{x}_{2} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\operatorname{proj}_{\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}} \mathbf{x}_{3} \\
\mathbf{v}_{4} & =\mathbf{x}_{4}-\operatorname{proj}_{\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}} \mathbf{x}_{4} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\operatorname{proj}_{\text {Span }\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}} \mathbf{x}_{p}
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. If an orthonormal basis is desired, normalize the vectors by setting

$$
\mathbf{w}_{i}=\frac{1}{\left\|\mathbf{v}_{i}\right\|} \mathbf{v}_{i}, \quad i=1, \ldots, p
$$

The set $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ is an orthonormal basis for W.

Example
Find an orthonormal (that's orthonormal not just orthogonal) basis for Col A where $A=\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$.

Note: $A \xrightarrow{\text { ref }}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
The columns of A are a basis for Col A.

$$
\text { Let } \vec{x}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]
$$

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right] \quad \vec{x}_{2} \cdot \vec{V}_{1}=-6-24-2-4=-36 \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{V}_{1}}{\vec{v}_{1} \cdot \vec{V}_{1}} \vec{V}_{1} \\
&=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\left(\frac{-36}{12}\right)\left[\begin{array}{l}
-1 \\
3 \\
1 \\
1
\end{array}\right] \\
&=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]+\left[\begin{array}{r}
-3 \\
9 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{r}
3 \\
1 \\
1 \\
-1
\end{array}\right] \\
& \text { Note } \vec{V}_{1} \cdot \vec{V}_{2}=-3+3+1-1=12 \\
& \text { N }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{V}_{2}=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right] \\
& \vec{V}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{V}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1}-\frac{\vec{x}_{3} \cdot \vec{V}_{2}}{\vec{V}_{2} \cdot \vec{V}_{2}} \vec{V}_{2} \\
& \vec{V}_{1} \cdot \vec{V}_{1}=12, \quad \vec{V}_{2} \cdot \vec{V}_{2}=12 \quad \vec{V}_{1} \cdot \vec{x}_{3} \\
& \vec{V}_{1} \cdot \vec{V}_{1} \\
& \vec{V}_{1} \cdot \vec{X}_{3}=-6+9+6-3=6 \quad \frac{6}{12}=\frac{1}{2} \\
& \vec{V}_{2} \cdot \vec{x}_{3}=18+3+6+3=30 \quad \frac{\vec{V}_{2} \cdot \vec{x}_{3}}{\vec{V}_{2} \cdot \vec{V}_{2}}=\frac{30}{12}=\frac{5}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\vec{V}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{V}_{2}=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right] \\
\vec{V}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{1}{2}\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{5}{2}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right] \\
\begin{array}{ll}
6+\frac{1}{2}-\frac{15}{2}=-1 & \text { Chech: } \\
3-\frac{3}{2}-\frac{5}{2}=-1 & \vec{V}_{1} \cdot \vec{V}_{3}=1-3+3-1=0 \\
6-\frac{1}{2}-\frac{5}{2}=3 & \vec{V}_{2} \cdot \vec{V}_{3}=-3-1+3+1=0 \\
-3-\frac{1}{2}+\frac{5}{2}=-1 &
\end{array} .
\end{array}
$$

$$
\left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right] \cup\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]\right\} \quad \text { is }
$$

an orthogand basis for $\operatorname{col} A$.
Normalize to get an orthonormal basis.

$$
\left\|\vec{v}_{i}\right\|=\sqrt{12} \text { for all } i=1,2,3
$$

$$
\left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]\right\}
$$

An orth onormal basis is

$$
\left\{\left[\begin{array}{c}
\frac{-1}{\sqrt{12}} \\
\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{1}{\sqrt{12}}
\end{array}\right],\left[\begin{array}{c}
\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{-1}{\sqrt{12}}
\end{array}\right],\left[\begin{array}{c}
-1 / \sqrt{12} \\
-1 / \sqrt{12} \\
3 / \sqrt{12} \\
-1 / \sqrt{12}
\end{array}\right]\right\}
$$

