July 20 Math 3260 sec. 51 Summer 2023

Given some point **y** in \mathbb{R}^n , we considered the problem of finding the point in some subspace *W* of \mathbb{R}^n that is closest to **y**, or figuring out how far **y** is from *W*.

Perhaps *W* is the column space of some matrix, and we want to approximate the solution to a problem $A\mathbf{x} = \mathbf{b}$ that's not actually consistent.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Each vector **y** in \mathbb{R}^n can be written uniquely as a sum

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis for *W*, then

$$\hat{\mathbf{y}} = \sum_{j=1}^{\rho} \left(\frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \right) \mathbf{u}_j, \text{ and } \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

This holds even if W is a line $\text{Span}\{\mathbf{u}\}$ for one nonzero \mathbf{u} in which case

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

July 18, 2023

2/17

Orthogonal Decomposition with Orthonormal Basis

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal** basis of a subspace W of \mathbb{R}^n , and **y** is any vector in \mathbb{R}^n then

$$\operatorname{proj}_{W} \mathbf{y} = \sum_{j=1}^{p} \left(\mathbf{y} \cdot \mathbf{u}_{j} \right) \mathbf{u}_{j}.$$

And, if U is the matrix $U = [\mathbf{u}_1 \cdots \mathbf{u}_p]$, then the above is equivalent to

$$\mathsf{proj}_{W} \mathbf{y} = U U^T \mathbf{y}.$$

Remark

If *W* has dimension \geq 2, these decomposition formulas only work with an orthogonal basis. If you don't have an orthogonal basis, it's not clear how to make use of this.

Section 6.4: Gram-Schmidt Orthogonalization

Big Question:

Given any-old basis for a subspace W of \mathbb{R}^n , can we construct an orthogonal basis for that same space?

Example: Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\} = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1 \end{bmatrix} \right\}$$
. Find an

• • • • • • • • • • • •

July 18, 2023

4/17

orthogonal basis $\{v_1, v_2\}$ that spans W.

$$\vec{V}_1$$
 and \vec{V}_2 are in W_1 , so
 $\vec{V}_1 = a_1 \vec{X}_1 + a_2 \vec{X}_2$ and $\vec{V}_2 = b_1 \vec{X}_1 + b_2 \vec{X}_2$
we need $\vec{V}_1 \cdot \vec{V}_2 = 0$

 $a_1 = 1$ and $b_2 = 1$ and $a_2 = 0$ Let. so Vi= Xi $\vec{V}_z = \vec{b}_1 \vec{X}_1 + \vec{X}_2$

we need $V_1 \cdot V_2 = 0$

 $\vec{v}_1 \cdot \vec{v}_2 = \vec{x}_1 \cdot (\vec{b}_1 \vec{x}_1 + \vec{x}_2) = 0$ $b_1, \vec{\chi}_1, \vec{\chi}_1 + \vec{\chi}_1, \vec{\chi}_2 = 0$ b, x,·x, = -x,·X2

 $b_1 = \frac{-\vec{X}_1 \cdot \vec{X}_2}{\vec{X}_1 \cdot \vec{X}_1}$

イロト イ団ト イヨト イヨト July 18, 2023

5/17

Since $\vec{X}_1 = \vec{V}_1$, $\vec{b}_1 = -\vec{V}_1 \cdot \vec{X}_2$ $\vec{V}_1 \cdot \vec{V}_1$

マーズ $\vec{v}_z = b_i \vec{X}_i + \vec{X}_z$

 $= \operatorname{Span} \left\{ \left| \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right|, \left| \begin{array}{c} 0 \\ -1 \\ -1 \end{array} \right| \right\}.$

 $\vec{v}_{1} = \vec{x}_{1}$ $\vec{v}_{2} = \vec{x}_{2} - \frac{\vec{v}_{1} \cdot \vec{x}_{2}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}$

$$\vec{v}_{I} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\vec{v}_{z} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} - \begin{pmatrix} -2 \\ -3 \end{pmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Jz= Xz - Prijx Xz $\vec{\nabla}_{1}\cdot\vec{X}_{2}=-2$

2.2=3

 the second se

 $\bigvee_{Z} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -1/3 \\ -1/3 \\ -1/3 \end{bmatrix}$

The new, orthogonal basis is $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2/3 \\ -1/3 \\ -1/3 \\ -1/7 \end{pmatrix}$

Check for othogonality: $V_1 \cdot V_2 = \frac{7}{3} - \frac{1}{3} = 0$

Theorem: Gram Schmidt Process

Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ be any basis for the nonzero subspace W of \mathbb{R}^n . Define the set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ via

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{2} = \mathbf{v}_{3} + \left(\frac{\mathbf{v}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} + \left(\frac{\mathbf{v}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \sum_{j=1}^{p-1} \left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}} \right) \mathbf{v}_{j}.$$

Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is an orthogonal basis for *W*. Moreover, for each $k = 1, \ldots, p$

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}.$$

Theorem: Gram Schmidt Process

Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ be any basis for the nonzero subspace W of \mathbb{R}^n . Define the set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ via

Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is an orthogonal basis for *W*. If an orthonormal basis is desired, normalize the vectors by setting

$$\mathbf{w}_i = \frac{1}{\|\mathbf{v}_i\|} \mathbf{v}_i, \quad i = 1, \dots, p.$$

The set $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$ is an **orthonormal** basis for *W*.

July 18, 2023

Example

Find an orthonormal (that's orthonormal not just orthogonal) basis for

Col A where
$$A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$
.
Note: $A \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.
The columns of A are a basis for ColA.
Let $\vec{X}_1 = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$, $\vec{X}_2 = \begin{bmatrix} 6 \\ -8 \\ -2 \\ -4 \end{bmatrix}$, $\vec{X}_3 = \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \\ -2 \end{bmatrix}$.

July 18, 2023 11/17

 $\vec{\nabla}_3 = \vec{\chi}_3 - \frac{\vec{\chi}_3 \cdot \vec{\nabla}_i}{\vec{\nabla}_i \cdot \vec{\nabla}_i} \vec{\nabla}_i - \frac{\vec{\chi}_3 \cdot \vec{\nabla}_2}{\vec{\nabla}_3 \cdot \vec{\nabla}_2} \vec{\nabla}_2$

 $\vec{v}_1, \vec{v}_1 = 12, \quad \vec{v}_2, \quad \vec{v}_2 = 12$ $v_1 \cdot x_3 = -6 + 9 + 6 - 3 = 6$ $\vec{v}_2 \cdot \vec{x}_3 = 18 + 3 + 6 + 3 = 30$

 $\frac{V_1 \cdot X_3}{V_1 \cdot V_1} = \frac{6}{12} = \frac{1}{2}$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ July 18, 2023 12/17

 $6 + \frac{1}{2} - \frac{1}{2} = -1$ $3 - \frac{3}{2} - \frac{5}{2} = -1$ $6 - \frac{1}{2} - \frac{5}{2} = -1$ $3 - \frac{1}{2} + \frac{5}{2} = -1$ Chech: $\vec{v}_1 \cdot \vec{v}_3 = 1 - 3 + 3 - 1 = 0$ $\vec{v}_2 \cdot \vec{v}_3 = -3 - 1 + 3 + 1 = 0$

▲ □ ▶ < ⓓ ▶ < 틸 ▶ < 틸 ▶ 월 < ♡ Q @
 July 18, 2023 13/17

Normalize to get an

orthonormal basis.

11vill = VIZ for all i=1,2,3

July 18, 2023 14/17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <