July 21 Math 3260 sec. 51 Summer 2025

6.2 Eigenvalues & Eigenvectors

We defined eigenvalues and eigenvectors.

Definition

Let A be an $n \times n$ matrix. An **eigenvalue** of A is a scalar λ for which there exists a nonzero vector \vec{x} such that

$$A\vec{x} = \lambda \vec{x}.\tag{1}$$

For a given eigenvalue λ , a nonzero vector \vec{x} satisfying equation (1) is called an **eigenvector** corresponding to the eigenvalue λ .

We Defined the Characteristic Polynomial/Equation

Definition

Let A be an $n \times n$ matrix. The function

$$P_A(\lambda) = \det(A - \lambda I_n)$$

is called the **characteristic polynomial** of the matrix A. The equation

$$P_A(\lambda) = 0$$
, i.e., $det(A - \lambda I_n) = 0$

is called the **characteristic equation** of the matrix *A*.

Theorem

Let A be an $n \times n$ matrix, and let $P_A(\lambda)$ be the characteristic polynomial of A. The number λ_0 is an eigenvalue of A if and only if $P_A(\lambda_0) = 0$. That is, λ_0 is an eigenvalue of A if and only if it is a root of the characteristic equation $\det(A - \lambda I_n) = 0$.

Eigenspaces & Eigenbases

Definition

Let A be an $n \times n$ matrix and λ_0 be an eigenvalue of A. The eigenspace corresponding to the eigenvalue λ_0 is the set

$$E_A(\lambda_0) = \{\vec{x} \in R^n \mid A\vec{x} = \lambda_0 \vec{x}\} = \mathcal{N}(A - \lambda_0 I_n).$$

An **eigenspace** is a null space, so it's a subspace of \mathbb{R}^n . We can find a basis the way we regularly find the basis for a null space.

An **eigenspace** is all of the eigenvectors for a given eigenvalue with the zero vector thrown in to make a subspace.

For $n \times n$ matrix A with eigenvalue λ_0 :

Algebraic & Geometric Multiplicities

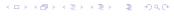
The **algebraic multiplicity** of λ_0 is its multiplicity as the root of the characteristic equation $P_A(\lambda) = 0$.

The **geometric multiplicity** of λ_0 is the dimension of the eigenspace $E_A(\lambda_0)$.

The algebraic multiplicity of an eigenvalue is greater than or equal to the geometric multiplicity.

To find the multiplicities

- ▶ For the algebraic, factor the characteristic polynomial, $P_A(\lambda)$, and
- for the geometric, find a basis for the eigenspace $\mathcal{N}(A \lambda_0 I_n)$



Theorem

Let $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ be a set of eigenvectors of an $n \times n$ matrix corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$. Then the set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent.

Note

If A is an $n \times n$ matrix with n distinct eigenvalues, then A has a set of n linearly independent eigenvectors.

Remark: For a given matrix, A, we're interested in whether it is possible to build a basis for R^n using only eigenvectors of A.

Definition: Eigenbasis

Let A be an $n \times n$ matrix. If A has n linearly independent eigenvectors, $\vec{x}_1, \ldots, \vec{x}_n$ (combined across all eigenvalues), then the set $\mathcal{E}_A = \{\vec{x}_1, \ldots, \vec{x}_n\}$ is a basis for R^n called an **eigenbasis** for A.

Suppose *A* is $n \times n$

- ▶ If A has n distinct eigenvalues, it is guaranteed to have an eigenbasis.
- ▶ If *A* has fewer than *n* distinct eigenvalues, then
 - ▶ it has an eigenbasis if the sum of all geometric multiplicities is n:
 - it doesn't have an eigenbasis if the sum of all geometric multiplicities is smaller than n.

Example

Find an eigenbasis for $A = \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix}$ or show that it is not possible.

Find the eisenvalues.

$$\det(A-\lambda T_z) = \det \begin{bmatrix} -z-\lambda & 8 \\ 1 & s-\lambda \end{bmatrix}$$

$$= (-z-\lambda)(s-\lambda) - 8(1)$$

$$= \lambda^2 - 3\lambda - 10 - 8 = \lambda^2 - 3\lambda - 18$$

$$P_A(\lambda) = \lambda^2 - 3\lambda - 18 \quad \text{s.t.} \quad P_A(\lambda) = 0$$

$$(\lambda - 6)(\lambda + 3) = 0 \Rightarrow \lambda_z = -3$$

July 21, 2025 7/27

rest
$$\begin{bmatrix} 1 & -1 \\ r & 0 \end{bmatrix}$$
 $\times_{1} = \times_{2}$ $\times_{2} - \infty$.

 $X = \times_{2} (1, 1)$

A basis for $E_{A}(6)$ is $\{(1, 1)\}$.

 $A = -3$, $A = (-3) I_{2} = \begin{bmatrix} 1 & 8 \\ 1 & 8 \end{bmatrix}$ $(A + 3I_{2}) X = 0_{2}$
 $C = -3 \times_{2} - 3$
 $X = -3 \times_{2} - 3$

July 21, 2025

8/27

 $\lambda_1 = 6 \qquad A - 6 \pm z = \begin{pmatrix} -8 & 8 \\ 1 & -1 \end{pmatrix} \qquad (A - 6 \pm z) \stackrel{\times}{X} = \stackrel{\circ}{\partial} z$

 $A = \left| \begin{array}{cc} -2 & 8 \\ 1 & 5 \end{array} \right|$

x= x2 (-8, 1)

A basis for Ex (-8,0).

A has an eigenbasis,

{ < 1, 17, <-8, 17}.

Example:
$$A = \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix}$$
 $\lambda_1 = 6$ $\lambda_2 = -3$ $\vec{x}_1 = \langle 1, 1 \rangle$ $\vec{x}_2 = \langle -8, 1 \rangle$

- 1. Create a matrix *C* having the eigenvectors as its column vectors.
- 2. Find C^{-1} .
- 3. Find the product $C^{-1}AC$.

$$C = \begin{bmatrix} 1 & 1 \\ 1 & -8 \end{bmatrix}$$

2.
$$\left[C \mid I_z \right] = \left[\left[\begin{array}{c|c} -8 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array} \right] - R_1 + R_2 \rightarrow R_2$$

$$\begin{pmatrix}
1 & -8 & | & 0 \\
0 & 9 & | & -1 & |
\end{pmatrix}$$

$$\frac{1}{5} R_2 \rightarrow R_2$$

$$\begin{bmatrix}
1 & -8 & | & 1 & 0 \\
0 & | & -\frac{1}{4} & \frac{1}{4}
\end{bmatrix}$$

$$8R_2 + R_1 \rightarrow R_1$$

$$\begin{bmatrix} 0 & 1 & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \quad C_1 = \frac{1}{4} \begin{bmatrix} 1 & 8 \\ -1 & 1 \end{bmatrix}$$

Ched:
$$C'C = \frac{1}{3}\begin{bmatrix} 1 & 8 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & -8 \\ 1 & 1 \end{bmatrix}$$

$$= \frac{1}{3}\begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} = IZ$$

$$A = \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix} \qquad C' = \begin{bmatrix} 1 & 8 \\ -1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -8 \\ 1 & 1 \end{bmatrix}$$

$$C'AC = \frac{1}{9} \begin{bmatrix} 1 & 8 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 8 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & -8 \\ 1 & 1 \end{bmatrix} \qquad \lambda_{2} = 3$$

$$= \frac{1}{4} \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 & -3 \\ 6 & 24 \end{bmatrix}$$

$$=\frac{1}{4}\begin{bmatrix}0.27\\0.27\end{bmatrix}=\begin{bmatrix}0.3\end{bmatrix}$$

D and A are similar modices.

6.3 Diagonalization

Definition

An $n \times n$ matrix A is said to be **diagonalizable** if it is similar to a diagonal matrix. That is, A is diagonalizable if there exists a diagonal matrix D and an invertible matrix C such that

$$D=C^{-1}AC.$$

The previous example suggests that diagonalizability is related to making a matrix out of eigenvectors. This turns out to be true, but to get an $n \times n$ matrix that is actually invertible, we need n linearly independent vectors. This is where having an eigenbasis comes in.

Facts About Similar Matrices

Theorem

If A and B are similar matrices, the det(A) = det(B).

Theorem

If A and B are similar matrices, then A and B have the same eigenvalues, each with the same algebraic and geometric multiplicities.

If *A* and *B* are similar, so they share an eigenvalue λ , the eigenvectors corresponding to λ are **generally different**.

$$B = C^{-1}AC$$

Show that
$$det(B) = det(A)$$
 and $P_B(\lambda) = P_A(\lambda)$.

\[
\s\circ_{A}(\frac{1}{2} \circ_{A}) = \circ_{A}(\frac{1}{2} \circ_{A})
\]

=
$$\frac{1}{2\pi(C)}$$
 det(C) de(A)

4□ > 4□ > 4□ > 4□ > 4□ > 9

July 21, 2025

16/27

$$P_{B}(\lambda) = dit(T - \lambda T_{n}), P_{A}(\lambda) = dit(A - \lambda T_{n})$$

$$dit(B - \lambda T_{n}) = dt(C'A(- \lambda T_{n}))$$

= dx((c'A-x c'In)c)

 ✓□ > ✓□ > ✓□ > ✓□ > ✓□ > ✓□ >
 □ > ✓□ >
 □ > ✓□ >
 □ > ✓□
 □ >
 □ > ✓□
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >
 □ >

$$\Rightarrow P_A(\lambda) = P_B(\lambda).$$

Theorem

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Moreover, if A is diagonalizable, then there exists a diagonal matrix D such that $D = C^{-1}AC$ where the columns of the invertible matrix C are the vectors in an eigenbasis, \mathcal{E}_A , for the matrix A, and the diagonal entries of the matrix D are the eigenvalues of A.

Remark: If A has n distinct eigenvalues, then it is guaranteed to be diagonalizable. If it has less than n distinct eigenvalues, it may or may not be diagonalizable. A is diagonalizable if the sum of the geometric multiplicities is n.

Example

Let
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
. The characteristic polynomial

 $P_A(\lambda) = (1 - \lambda)(2 + \lambda)^2$. Determine whether *A* is diagonalizable.

A has two even values
$$\lambda_1 = 1$$
, $\lambda_2 = -2$.

Find bases for the evenspaces $E_A(D) = E_A(D) = E_A(D)$

July 21, 2025 20/27

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{array}{c}
X_1 = -X_2 \\
X_2 = \text{free} \\
X_3 = 0
\end{array}$$

$$\begin{array}{c}
X_1 = -X_2 \\
X_2 = \text{free}
\end{array}$$

The seamedric multiplicity of $\lambda_z = -2$ is one. A is not diagonalizable.

Example

Diagonalize the matrix $A = \begin{bmatrix} -4 & 3 \\ -6 & 5 \end{bmatrix}$ if possible.

$$P_{A(\lambda)} = (\lambda - 2)(\lambda + 1) \Rightarrow \begin{array}{c} \chi_1 = 2 & \vec{\chi} = \chi_1(\frac{1}{2}, 1) \\ \chi_2 = -1 & \vec{\chi} = \chi_2(1, 1) \end{array}$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$$

July 21, 2025

22/27

$$C' = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$$

$$C' A C = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -4 & 3 \\ -6 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

Evaluate A^{10} if $A = \begin{bmatrix} -4 & 3 \\ -6 & 5 \end{bmatrix}$.

$$D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = C'AC = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -4 & 3 \\ -6 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A = CDC' \qquad D'' = \begin{bmatrix} 2''' & 0 \\ 0 & (-1)'' & 0 \end{bmatrix} = \begin{bmatrix} 1024 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A^{\circ} = CD^{\circ}C^{\circ}$$

$$= \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1024 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$$

July 21, 2025 26/27