July 6 Math 3260 sec. 51 Summer 2023

4.1-4.3 Recap

- We defined vector spaces \& subspaces.
- For an $m \times n$ matrix A, we defined some associated subspaces of \mathbb{R}^{n} (the null and row spaces) or \mathbb{R}^{m} (the column space).
- We generalized the concept of a linear transformation so that the domain and codomains can be any vector spaces (not only $\mathbb{R}^{\text {something }}$), and defined the kernel and range.

4.1-4.3 Recap

- We defined linear dependence/independence for a set of vectors.
- We defined a basis (a linearly independent spanning set) for a vector space or subspace.
- We found that an rref can be used to construct bases for each of the null, row and column spaces of a matrix.

Basis

Definition:

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis of H provided
(i) \mathcal{B} is linearly independent, and
(ii) $H=\operatorname{Span}(\mathcal{B})$.

Remark: A basis is a set of building blocks that can be used to build a vector space using just the two operations, vector addition and scalar multiplication.

Remark: The linear independence requirement means that every vector in the basis gives some necessary information about the vector space.

Bases for $\operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Nul}(A)$

Given a matrix A, find the rref. Then

- The pivot columns of the original matrix A give a basis for $\operatorname{Col}(A)$.
- The nonzero rows of $\operatorname{rref}(A)$ give a basis for $\operatorname{Row}(A)$.
- Use the rref to solve $A \mathbf{x}=\mathbf{0}$ to identify a basis for $\operatorname{Nul}(A)$.

Section 4.4: Coordinate Systems

Theorem:

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then for each vector \mathbf{x} in V, there is a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}
$$

- Remark: It's clear that each vector can be written as a linear combination because a basis is a spanning set.
- Remark: This is saying that it can only be done in one way-that is, there is only one set of numbers c_{1}, \ldots, c_{n}.

Uniqueness of Coefficients
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V and let \mathbf{x} be a vector in V. If

$$
\begin{aligned}
& \mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\cdots c_{n} \mathbf{b}_{n} \quad \text { and } \\
& \mathbf{x}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\cdots a_{n} \mathbf{b}_{n},
\end{aligned}
$$

show that $a_{1}=c_{1}, a_{2}=c_{2}, \ldots, a_{n}=c_{n}$.
we can use a homogeneous equation because $\vec{x}-\vec{x}=\overrightarrow{0}$. Subtract

$$
\overrightarrow{0}=\left(c_{1}-a_{1}\right) \vec{b}_{1}+\left(c_{2}-a_{2}\right) \vec{b}_{2}+\ldots+\left(c_{n}-a_{n}\right) \vec{b}_{n}
$$

we have a honogeneew vector
eppation in $\vec{b}_{b}, \ldots, \vec{b}_{n}$
Since $\left\{\vec{b}, \ldots, \vec{b}_{n}\right\}$ is linearly
independent the coefficients must all be zero.

$$
\begin{array}{ccc}
c_{1}-a_{1}=0 & \Rightarrow \quad a_{1}=c_{1} \\
c_{2}-a_{2}=0 & \Rightarrow & a_{2}=c_{2} \\
\vdots & & \\
c_{n}-a_{n}=0 & \Rightarrow & a_{n}=c_{n}
\end{array}
$$

Consequence of Linear Independence

$$
\text { Let } \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

It is true that $\mathbb{R}^{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Consider $\mathbf{x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Note that we can write \mathbf{x} in two different ways

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}+0 \mathbf{v}_{3} \text { and } \\
& \mathbf{x}=1 \mathbf{v}_{1}+2 \mathbf{v}_{2}+1 \mathbf{v}_{3} .
\end{aligned}
$$

Why doesn't this contradict our theorem?

$$
\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \text { is lin. deperdent }
$$

Definition: Coordinate Vectors

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} whose entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.
We'll use the notation $[\mathbf{x}]_{\mathcal{B}}$; that is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$.

Big Idea!

The vector \mathbf{x} can be any sort of vector (from any sort of vector space), but

$$
[\mathbf{x}]_{\mathcal{B}} \text { is a vector in } \mathbb{R}^{n}
$$

Example
Consider the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ (in that order) for \mathbb{P}_{3}. Determine $[\mathbf{p}]_{\mathcal{B}}$ for
(a) $\mathbf{p}(t)=3-4 t^{2}+6 t^{3}$

$$
\begin{aligned}
{[\vec{p}]_{B} } & =\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \text { if } \vec{p}(t)=c_{1}(1)+c_{2}(t)+c_{3}\left(t^{2}\right)+c_{4}\left(t^{3}\right) \\
{[\vec{p}]_{B} } & =\left[\begin{array}{c}
3 \\
0 \\
-4 \\
6
\end{array}\right]
\end{aligned}
$$

$\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$

Determine $[\mathbf{p}]_{\mathcal{B}}$ for
(b) $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}$

$$
[\vec{p}]_{B}=\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

An Alternative Basis for \mathbb{R}^{2}
Let $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for ${ }^{*}$ $\mathbf{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.

$$
\begin{gathered}
{[\vec{x}]_{B}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \text { where } \vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}} \\
c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
u \\
5
\end{array}\right]
\end{gathered}
$$

as a matrix equation a

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

*If we just write \mathbf{x} with no brackets around it, the implication is that it's written with respect to the elementary basis $\&=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.

$$
\text { July 1, } 2023 \quad 12 / 60
$$

Let's use matrix in version

$$
\begin{aligned}
& {\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] }=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
4 \\
5
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right] } \\
& {\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
9 \\
6
\end{array}\right] } \\
& {[\vec{x}]_{B B} }=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Change of Coordinates Matrix

Note in this example that

$$
\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

where $P_{\mathcal{B}}$ is the matrix having the basis vectors from \mathcal{B} as its columns.

$$
P_{\mathcal{B}}=\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]
$$

Definition

Given an ordered basis \mathcal{B} in \mathbb{R}^{n}, the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

is called the change of coordinates matrix for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Change of Coordinates in \mathbb{R}^{n}

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

Remark: By the Invertible Matrix Theorem, we know that a change of coordinates mapping is a one to one transformation of \mathbb{R}^{n} onto \mathbb{R}^{n}.

Example
For $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$, we have

$$
\begin{aligned}
& \vec{x}=P_{B}[\vec{x}]_{B} \\
& {[\vec{x}]_{B}=P_{Q}^{-1} \vec{x}}
\end{aligned}
$$

$$
P_{\mathcal{B}}=\left[\begin{array}{rr}
2 & -1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad P_{\mathcal{B}}^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right]
$$

(a) Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\begin{gathered}
{[\vec{x}]_{B}=P_{B}^{-1} \vec{x}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
0
\end{array}\right]} \\
{[\vec{x}]_{B}=\left[\begin{array}{c}
1 \\
0
\end{array}\right]}
\end{gathered}
$$

(b) Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\vec{x}=P_{B}[\vec{x}]_{B}
$$

$$
[\vec{x}]_{B}=P_{0}^{-1} \vec{x}
$$

$$
[\vec{x}]_{B}=P_{B}^{-1} \vec{x}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\frac{2}{3}\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(c) Find \mathbf{x} if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\vec{x}=P_{B}[\vec{x}]_{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Figure: \mathbb{R}^{2} shown using elementary basis $\{(1,0),(0,1)\}$ and with the alternative basis $\{(2,1),(-1,1)\}$.

We can make new graph paper using this basis.

Figure: Graph paper constructed using the basis $\{(2,1),(-1,1)\}$.

Theorem: Coordinate Mapping

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark:

- For a vector space V, if there exists a coordinate mapping from $V \rightarrow \mathbb{R}^{n}$, we say that V is isomorphic to \mathbb{R}^{n}.
- Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

\mathbb{P}_{3} is Isomorphic to \mathbb{R}^{4}

We saw that using the ordered basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ that any vector

$$
\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}
$$

in \mathbb{P}_{3} has coordinate vector

$$
[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

in \mathbb{R}^{4}.

Example
Use coordinate vectors to determine if the set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ is linearly dependent or independent in \mathbb{P}_{2}.

$$
\mathbf{p}(t)=1-2 t^{2}, \quad \mathbf{q}(t)=3 t+t^{2}, \quad \mathbf{r}(t)=1+t
$$

Let's use the eleneuxary basis in \mathbb{P}_{2} $\beta=\left\{1, t, t^{2}\right\}$ in that order.

$$
\begin{aligned}
& [1, t, t]]_{B}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right],[\vec{q}]_{B}=\left[\begin{array}{c}
0 \\
3 \\
1
\end{array}\right],[\vec{r}]_{B}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \text { Let } A=\left[\begin{array}{lll}
{[\vec{p}]_{B}[\vec{q}]_{B}} & (\vec{r}]_{B}
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 1 \\
-2 & 1 & 0
\end{array}\right]
$$

Lets compute $\operatorname{det}(A)$

$$
\begin{aligned}
\operatorname{det}(A) & =1\left|\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right|+1\left|\begin{array}{cc}
0 & 3 \\
-2 & 1
\end{array}\right| \\
& =1(0-1)+1(0+6)=5 \neq 0
\end{aligned}
$$

So the columns of A are linearly. in dependent in \mathbb{R}^{3}.

Hence $\{\vec{p}, \vec{q}, \vec{r}\}$ is linearly independent in \mathbb{P}_{2}.

Section 4.5: Dimension of a Vector Space

Theorem:

If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

This extends our result in \mathbb{R}^{n} that said that a set with more vectors than entries in each vector had to be linearly dependent.

For example,

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
10 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right]\right\}
$$

is linearly dependent because there are 4 vectors from \mathbb{R}^{3}.

Example
Recall that a basis for \mathbb{P}_{3} is $\left\{1, t, t^{2}, t^{3}\right\}$.
Is the set below linearly dependent or linearly independent?

$$
\left\{1+t, 2 t-3 t^{3}, 1+t+t^{2}, 1+t+t^{2}+t^{3}, 2-t+2 t^{3}\right\}
$$

This set contains 5 vectors.
A basis for \mathbb{P}_{3} has 4 vectors.
This set is linearly dependent,

All Bases are the same Size

Our theorem gives the immediate corollary:

Corollary:

If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

Remark: This makes sense. If one basis had more vectors than another basis, it couldn't be linearly independent.

Dimension

Consider a vector space V.

Definition:

If V is spanned by a finite set, then V is called finite dimensional. In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V \text {. }
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0 .
$$

If V is not spanned by a finite set ${ }^{2}$, then V is said to be infinite dimensional.
${ }^{a} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples
(a) Determine $\operatorname{dim}\left(\mathbb{R}^{n}\right)$. The elementary basis has n vectors

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$ in it.

(b) Determine $\operatorname{dim} \operatorname{Col}(A)$ where $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$.

There ore two pivot columns, so a basis hos twa vectors in it.

$$
\operatorname{dim}(\operatorname{col} A)=2
$$

Some Geometry in \mathbb{R}^{3}

We can describe all of the subspaces of \mathbb{R}^{3} geometrically. The subspace(s) of dimension
(a) zero: is just the origin (one point), ($0,0,0$).
(b) one: are lines through the origin. Span $\{\mathbf{u}\}$ where \mathbf{u} is not the zero vector.
(c) two: are planes that contain the origin and two other, noncolinear points. Span $\{\mathbf{u}, \mathbf{v}\}$ with $\{\mathbf{u}, \mathbf{v}\}$ linearly independent.
(d) three: is all of \mathbb{R}^{3}.

Subspaces and Dimension

Theorem:

Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Remark: We said before that we can take a spanning set and remove extra vectors to get a basis. This follow up statement says if we start with a linearly independent set, we can add to it as needed to get a basis.

Subspaces and Dimension

Theorem:

Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

Remark: this connects two properties spanning and linear independence. If $\operatorname{dim} V=p$ and a set contains p vectors then

- linear independence \Longrightarrow spanning
- spanning \Longrightarrow linear independence

Again, this is IF the number of vectors matches the dimension of the vector space.

Column and Null Spaces

Theorem:

Let A be an $m \times n$ matrix. Then
$\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and
$\operatorname{dim} \operatorname{Col} A=$ the number of pivot positions in A.

Example
A matrix A is show along with its ref. Find the dimensions of the null space and column space of A.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-3 & 1 & -7 & -1 \\
3 & 0 & 6 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \operatorname{dim}(\operatorname{Col} A)=\# \text { pivot columns } \\
& \operatorname{din}(\text { Nae } A)=\# \text { Sha variables in } A \bar{x}=\overrightarrow{0} \\
& \operatorname{dim}(\operatorname{Col} A)=3, \operatorname{dim}(\text { Nhl } A)=1
\end{aligned}
$$

Example

A matrix A along with its ref is shown.
$A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for Row A and state $\operatorname{dim} \operatorname{Row} A$.

$$
\begin{aligned}
& R_{\text {cow }}(A)=\operatorname{Spon}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-5
\end{array}\right]\right) \\
& \text { this is a basis } g \\
& \operatorname{dim}(\operatorname{Row} A)=3
\end{aligned}
$$

Example continued ...

$A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) Find a basis for $\operatorname{Col} A$ and state $\operatorname{dim} \operatorname{Col} A$.

$$
\begin{gathered}
\operatorname{Col}(A)=\operatorname{Sec}\left\{\left[\begin{array}{c}
-2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-5 \\
3 \\
11 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
7 \\
5
\end{array}\right]\right\} \\
\text { this is a basis. } \\
\operatorname{dim}(\operatorname{col} A)=3
\end{gathered}
$$

Example continued ...

$A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(c) Find a basis for $\operatorname{Nul} A$ and state $\operatorname{dim} \operatorname{Nul} A$.

From the ref

$$
\begin{aligned}
& x_{1}=-x_{3}-x_{5} \\
& x_{2}=2 x_{3}-3 x_{5} \\
& x_{4}=5 x_{5} \\
& x_{3}, x_{5} \text { - are free }
\end{aligned}
$$

$$
\begin{gathered}
\hat{x}=x_{3}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right] \\
\left.\left\{\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right]\right\} \text { is a basis } \\
\operatorname{din}(\text { Jul } A)=2
\end{gathered}
$$

