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4.6 General Vector Spaces

We defined Real Vector Spaces:

1. linear combinations & span,

2. linear dependence & linear independence,

3. subspaces, bases, and dimension

Some examples included vector spaces of matrices, functions, sequences...

Mm×n, F (D), Cn(I), R∞.

A vector is an element of a vector space which can includes objects other
than real n-tuples. The term real tells us that the scalars are real numbers.
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A real vector space is a set, V , of objects called vectors together with two
operations called vector addition and scalar multiplication that satisfy the
following axioms: For each vector x⃗ , y⃗ , and z⃗ in V and for any scalars, c and d

1. the sum x⃗ + y⃗ is in V , and

2. the scalar multiple cx⃗ is in V .

3. x⃗ + y⃗ = y⃗ + x⃗ ,

4. (x⃗ + y⃗) + z⃗ = x⃗ + (y⃗ + z⃗),

5. There is an additive identity vector in V called the zero vector denoted
0⃗V , such that x⃗ + 0⃗V = x⃗ for every x⃗ in V ,

6. For each vector x⃗ in V , there is an additive inverse vector denoted −x⃗
such that −x⃗ + x⃗ = 0⃗V .

7. c(x⃗ + y⃗) = cx⃗ + cy⃗ ,

8. (c + d)x⃗ = cx⃗ + dx⃗ ,

9. c(dx⃗) = (cd)x⃗ = d(cx⃗), and

10. 1x⃗ = x⃗ .
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A Major Theorem on Vector Spaces

Theorem

Suppose that V is a vector space. Then

1. There is only one additive identity vector in V (i.e., the zero vector
of V is unique).

2. Each vector in V has only one additive inverse (i.e., the additive
inverse of any vector in V is unique).

3. If x⃗ is any vector in V , then 0x⃗ = 0⃗V .

4. If c is any scalar, then c0⃗V = 0⃗V .
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Linear Combination

Let S = {v⃗1, v⃗2, . . . , v⃗k} be a set of one or more (k ≥ 1) vectors in a
vector space V . A linear combination of these vectors is any vector
of the form

x1v⃗1 + x2v⃗2 + · · ·+ xk v⃗k ,

where x1, , x2, . . . , xk are scalars. The coefficients, x1, x2, . . . , xk , are
often called the weights.

Span

Let S = {v⃗1, v⃗2, . . . , v⃗k} be a set of one or more (k ≥ 1) vectors in
a vector space V . The set of all possible linear combinations of the
vectors in S is called the span of S. It is denoted by Span(S) or by
Span {v⃗1, v⃗2, . . . , v⃗k}.
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Linear Independence/Dependence

Let V be a vector space. The collection of vectors S = {v⃗1, v⃗2, . . . , v⃗k}
in V is said to be linearly independent if the homogeneous equation

x1v⃗1 + x2v⃗2 + · · ·+ xk v⃗k = 0⃗V (1)

has only the trivial solution, x1 = x2 = · · · = xk = 0. A set of vectors
that is not linearly independent is called linearly dependent.

If a set of vectors {v⃗1, v⃗2, . . . , v⃗k} in V is linearly dependent, an equation
of the form

x1v⃗1 + x2v⃗2 + · · ·+ xk v⃗k = 0⃗V

with at least one coefficient xi ̸= 0 is called a linear dependence rela-
tion.
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Subspace

Let V be a real vector space. A subspace of V is a nonempty set, S,
of vectors in V such that

▶ for every x⃗ and y⃗ in S, x⃗ + y⃗ is in S, and

▶ for each x⃗ in S and scalar c, cx⃗ is in S.

Basis

Let S be a subspace of a vector space V , and let B = {v⃗1, . . . , v⃗k} be a
subset of vectors in S. B is a basis of S provided

▶ Span(B) = S

▶ B is linearly independent.

If a subspace S of a vector space V has a basis with k vectors in it (k < ∞),
then every basis of S has k vectors in it. We’ll define dimension based on this.

July 3, 2025 6 / 47



Dimension

Let S be a subspace of a vector space V . We define the dimension of
S as follows:

▶ If S = {0⃗V}, then we define dim(S) = 0.

▶ If S has a basis consisting of k vectors, where k < ∞, then we
define dim(S) = k .

▶ If S is not spanned by any finite set of vectors, then we say that S
is infinite dimensional.

Examples of finite dimensional vector spaces include Rn, Mm×n, Pn, etc.
Examples of infinite dimensional vector spaces include R∞, F (D), Cn(I), etc.
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Section 4.7.4.2 Function Spaces Cn(I)

If D is a subset R, then F (D) is the vector space of real valued functions
with domain D.

F (D) = {f | f : D → R}

For f ,g ∈ F (D) and scalar c, we defined the two operations

vector addition (f + g)(x) = f (x) + g(x), for each x ∈ D

scalar multiplication (cf )(x) = cf (x), for each x ∈ D

The operations of vector addition and scalar multiplication are the ones that
are familiar from basic calculus.

The vector space F (D) is an example of an infinite dimensional vector space.

We want to consider the case that the domain D is an interval (which we’ll call
I for interval).
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Some Basic Results from Calculus

Let I = (a,b) be some interval in R, and suppose f and g are in
F (I) and c is a scalar.
▶ If f and g are continuous on I, then f + g and cf are

continuous on I.
▶ If f and g are differentiable on I, then f + g and cf are

differentiable on I, and

(f + g)′ = f ′ + g′, and (cf )′ = cf ′

▶ If f is differentiable on I, then f is continuous on I.
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Cn(I)
The notation C0(I) denotes the subset of F (I) of functions that are
continuous on I. Is C0(I) a subspace of F (I)?

The notation C1(I) denotes the subset of C0(I) of functions that are
continuously differentiable on I. Is C1(I) a subspace of C0(I)? Is C1(I)
a subspace of F (I)?

July 3, 2025 10 / 47



Cn(I)
▶ The set Cn(I) is the subspace of F (I) of functions that are at least

n-times continuously differentiable on I.

▶ The set C∞(I) is the subspace of F (I) of functions with continuous
derivatives of all orders on the interval I.

▶ The set C∞(R) is the subspace of F (R) of functions with continuous
derivatives of all orders on all of R.

Examples of C∞(R) functions include many familiar favorites:

ex , sin(x), cos(πx), tan−1(x), etc.

Last time, we establised that the set {1, x , x2} is linearly independent in
C∞(R). In fact, the set {1, x , x2, . . . , xn} is linearly independent in C∞(R) for
each positive integer n.
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Section 4.7.4.3 Function Spaces of Polynomials
Finite Dimensional Subspace of C∞(R)

Consider the set Bn = {1, x , x2, . . . , xn} in C∞(R). Let

Pn = Span(Bn).

Pn is the set of polynomials in x of degree at most n with real
coefficients. For

p(x) = p0 + p1x + . . .+ pnxn and q(x) = q0 + q1x + . . .+ qnxn

in Pn and scalar c,

vector addition (p+q)(x) = (p0+q0)+(p1+q1)x + · · ·+(pn +qn)xn, and

scalar multiplication (cp)(x) = cp0 + cp1x + . . .+ cpnxn.
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Example

Let P2,1 be the subset of P2 of polynomials p(x) = p0 + p1x + p2x2 that
satisfy p(1) = 0. Which of the following are elements of P2,1?

1. f (x) = 1 − 2x + x2

2. g(x) = 1 − 3x + 4x2

3. p(x) = 1 + 3x − 4x2

4. z(x) = 0
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Example Continued...
Show that P2,1 = {p ∈ P2 |p(1) = 0} is a subspace of P2 by finding a
spanning set (show that P2,1 can be defined as a span).
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4.8 Working with Coordinate Vectors

Coordinate Vectors

Suppose that V is a vector space and suppose that S is a finite dimen-
sional subspace of V . Suppose that B = {v⃗1, . . . , v⃗k} is an ordered
basis for S. Then the (unique) vector

[x⃗ ]B = ⟨c1, c2, . . . , ck ⟩ ∈ Rk

such that
x⃗ = c1v⃗1 + c2v⃗2 + · · ·+ ck v⃗k

is called the coordinate vector of x⃗ with respect to the ordered basis
B.

Note that no matter what sort of objects the vectors in S are, the coordinate
vectors are vectors in Rk .
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Two Lemmas
Lemma

Suppose that S is a subspace of a vector space V and B = {v⃗1, . . . , v⃗k}
is an ordered basis of S. If x⃗ and y⃗ are any two vectors in S and c is
any scalar then

1. [x⃗ + y⃗ ]B = [x⃗ ]B + [y⃗ ]B and

2. [cx⃗ ]B = c [x⃗ ]B.

Lemma

Suppose S is a subspace of a vector space V and B = {v⃗1, . . . , v⃗k}
is an ordered basis of S. Then 0⃗V is the only vector in S that has
coordinate vector 0⃗k . In other words, the following statement holds for
all vectors x⃗ ∈ S:

[x⃗ ]B = 0⃗k if and only if x⃗ = 0⃗V .
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Theorem

Suppose S is a subspace of a vector space V and B = {v⃗1, . . . , v⃗k} is
an ordered basis of S. Let T = {x⃗1, x⃗2, . . . , x⃗m} be any set of vectors
in S, and let CT =

{
[x⃗1]B, [x⃗2]B, . . . , [x⃗m]B

}
be the set of vectors in Rk

consisting of the coordinate vectors of the elements of T with respect
to the basis B. Then T is linearly independent in V if and only if CT is
linearly independent in Rk .

The power of this theorem is that it will allow us to translate a problem in
some finite dimensional vector space to Rk . Then we can use tools, like row
reduction, to bear.
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Example
Let S = {p,q, r}, where p(x) = 1 + 4x − 2x2 + 3x3,

q(x) = 1 + 3x − 3x2 + x3, and r(x) = 2 + 4x − 8x2 − 2x3.

Determine whether S is linearly dependent or linearly independent in
P3. If linearly dependent, find a linear dependence relation.
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Let S = {p,q, r}, where p(x) = 1 + 4x − 2x2 + 3x3,

q(x) = 1 + 3x − 3x2 + x3, and r(x) = 2 + 4x − 8x2 − 2x3.



Chapter 5 Linear Transformations

In this chapter, we will consider a special class of functions called
linear transformations. The inputs and outputs that we’ll be
interested in will be vectors.

Let’s start with some notation and concepts related to functions more
generally.
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Domain, Codomain, Images, & Range

“f maps D into C”

f︸︷︷︸
Rule

: D︸︷︷︸
set of all inputs

−→ C︸︷︷︸
set where outputs live

▶ D is the domain of the function.
▶ C is where the outputs are. It’s called the codomain.
▶ For x in D, if f (x) = y , we call y the image of x under f .
▶ If S is a subset of D, then the image of S under f is the collection

of all images for each x in S.

f (S) = {y ∈ C | y = f (x) for at least one x ∈ S} = {f (x) | x ∈ S}

▶ f (D) is the range of f . This is the set of all actual images. We can
write f (D) = range(f ).
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Codomain -vs- Range

Codomain = the set that contains the outputs

Range = the set of actual outputs

Example: Consider f : R → R defined by f (x) = ex . The codomain is
R because that’s how the function is being defined. But recall that

ex > 0, for all real x .

So the range is the interval (0,∞).

Example: Consider g : (0,∞) → R defined by g(x) = ln(x). For this
function

the codomain = R = the range.
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Onto, One-to-One, & Invertibility

f : D → C

Onto

If f (D) = C, that is, if the range is equal to the codomain, we say
that f is onto. In this case, we say

“f maps D onto C.”

If f maps D onto C, then for each y ∈ C

f (x) = y is consistent.

By consistent, we mean has at least one solution.
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Onto, One-to-One, & Invertibility

f : D → C

One-to-One

If for each y ∈ range(f ), the equation

f (x) = y

has exactly one solution, we say that f is one-to-one.

If f is one-to-one, then for each y such that f (x) = y is consistent

f (x) = y has a unique solution.
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Onto, One-to-One, & Invertibility

f : D → C

Invertible

If f maps D onto C and f is one-to-one, then we say that f is invertible.
If f : D → C is invertible, then there is a corresponding inverse func-
tion denoted by f−1 such that

(f−1 ◦ f )(x) = f−1(f (x)) = x , for each x ∈ D, and

(f ◦ f−1)(x) = f (f−1(x)) = x , for each x ∈ C.

f−1 : C → D is the function defined by

f−1 (y) = x where x is the unique solution of f (x) = y .
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Example
Let T : R2 → R2 be defined by T (x⃗) = Ax⃗ where A =

[
0 −1
1 0

]
.

1. Find the images of x⃗ = ⟨1,1⟩, x⃗ = ⟨−2,1⟩, and x⃗ = ⟨x1, x2⟩.
2. What is range(T )? Does T map R2 onto R2?
3. Is T one-to-one?
4. Is T invertible?

July 3, 2025 28 / 47



July 3, 2025 29 / 47



July 3, 2025 30 / 47



Example
Let P : R2 → R2 be defined by P(x⃗) = Bx⃗ where B =

[
0 0
0 1

]
.

1. Find the images of x⃗ = ⟨1,1⟩, x⃗ = ⟨−2,1⟩, and x⃗ = ⟨x1, x2⟩
2. What is range(P)? Does P map R2 onto R2?
3. Is P one-to-one?
4. Is P invertible?
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